1、由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变
2、蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)麻城市高中 2019-2020 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 设偶函数 f(x)在(0, +)上为减函数,且 f(2)=0 ,则不等式 0 的
3、解集为( )A(2 ,0)(2,+ ) B( ,2)(0,2) C( ,2)(2,+) D(2,0)(0,2)2 过抛物线 C:x 2=2y 的焦点 F 的直线 l 交抛物线 C 于 A、B 两点,若抛物线 C 在点 B 处的切线斜率为1,则线段|AF|= ( )A1 B2 C3 D43 命题“设 a、b、c R,若 ac2bc 2则 ab” 以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A0 B1 C2 D34 已知 F1、F 2是椭圆的两个焦点,满足 =0 的点 M 总在椭圆内部,则椭圆离心率的取值范围是( )A(0,1) B( 0, C(0, ) D ,1)5 设 D 为ABC
4、 所在平面内一点, ,则( )A BC D6 已知 f(x)=4+a x1的图象恒过定点 P,则点 P 的坐标是( )A(1,5) B(1,4) C(0,4) D(4,0)7 如图,正方体 ABCDA1B1C1D1的棱线长为 1,线段 B1D1上有两个动点 E,F,且 EF= ,则下列结论中错误的是( )由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实
5、验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变
6、”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)AAC BEBEF平面 ABCDC三棱锥 ABEF 的体积为定值D异面直线 AE,BF 所成的角为定值8 函数 f(x)=x 22ax,x1,+ )是增函数,则实数 a 的取值范围是( )AR B1,+) C( ,1 D2 ,+)9 独立性检验中,假设 H0:变量 X 与变量 Y 没有关系则在 H0成立的情况下,估算概率 P(K 26.635)0.01 表示的意义是( )A变量 X 与变量 Y 有关系的概率为 1%B变量 X 与变量 Y 没有关系的概率为 99%C变量
7、X 与变量 Y 有关系的概率为 99%D变量 X 与变量 Y 没有关系的概率为 99.9%10现有 16 张不同的卡片,其中红色、黄色、蓝色、绿色卡片各 4 张,从中任取 3 张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多 1 张,不同取法的种数为( )A232 B252 C472 D48411已知实数 x,y 满足有不等式组 ,且 z=2x+y 的最大值是最小值的 2 倍,则实数 a 的值是( )A2 B C D12执行如图所示的程序框图,则输出的 S 等于( )A19 B42 C47 D89由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或
8、“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上
9、来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)二、填空题13分别在区间 、 上任意选取一个实数 ,则随机事件“ ”的概率为_.0,1,eab、 lnab14设集合 A=x|x+m0,B=x|2x4,全集 U=R,且( UA)B= ,求实数 m 的取值范围为 15若执行如图 3 所示的框图,输入 ,则输出的数等于 。1
10、6若函数 f(x)=log ax(其中 a 为常数,且 a0,a1)满足 f(2)f (3),则 f(2x1)f(2 x)的解集是 17为了近似估计 的值,用计算机分别产生 90 个在1,1 的均匀随机数 x1,x 2,x 90和y1,y 2,y 90,在 90 组数对(x i,y i)(1i 90,iN *)中,经统计有 25 组数对满足 ,则以此估计的 值为 18若直线: 与直线 : 垂直,则 .012ayx2l0yxa三、解答题由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像
11、大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原
12、因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)19已知数列a n满足 a1=a,a n+1= (nN *)(1)求 a2,a 3,a 4;(2)猜测数列a n的通项公式,并用数学归纳法证明20如图,在四棱锥 PABCD 中,PD平面 ABCD,PD=DC=BC=1,AB=2,ABDC, BCD=90(1)求证:PCBC;(2)求点 A 到平面 PBC 的距离21已知 A(3,0),B
13、(3,0),C (x 0,y 0)是圆 M 上的三个不同的点(1)若 x0=4,y 0=1,求圆 M 的方程;(2)若点 C 是以 AB 为直径的圆 M 上的任意一点,直线 x=3 交直线 AC 于点 R,线段 BR 的中点为 D判断直线 CD 与圆 M 的位置关系,并证明你的结论由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛
14、B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙
15、所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)22在平面直角坐标系 xOy 中,点 B 与点 A( 1,1)关于原点 O 对称,P 是动点,且直线 AP 与 BP 的斜率之积等于 ()求动点 P 的轨迹方程;()设直线 AP 和 BP 分别与直线 x=3 交于点 M,N ,问:是否存在点 P 使得PAB 与PMN 的面积相等?若存在,求出点 P 的坐标;若不存在,说明理由23已知函数 f(x0= (1)画出 y=f(x)的图象,并指出函数的单调递增区间和递减区间; (2)解不等式 f(x1) 由于玻璃板的两面间具有一定的厚度,而两个面都会
16、成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5
17、)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)24【常州市 2018 届高三上武进区高中数学期中】已知函数 , 21lnfxaxRa若曲线 在点 处的切线经过点 ,求实数 的值;yfx1,f2,1若函数 在区间 上单调,求实数 的取值范围;23a设 ,若对 , ,使得 成
18、立,求整数 的最小sin8g10,20,x12fxga值由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_
19、( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)麻城市高中 2019-2020 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解:f(x)是偶
20、函数f( x)=f(x)不等式 ,即也就是 xf(x)0当 x0 时,有 f(x)0f( x)在( 0, +)上为减函数,且 f(2)=0f( x) 0 即 f(x)f(2),得 0x2;当 x0 时,有 f(x)0x0,f(x)=f(x)f(2),x2x2综上所述,原不等式的解集为:(, 2)(0,2)故选 B2 【答案】A【解析】解:x 2=2y,y=x,抛物线 C 在点 B 处的切线斜率为 1,B(1, ),x 2=2y 的焦点 F(0, ),准线方程为 y= ,直线 l 的方程为 y= ,|AF|=1故选:A【点评】本题考查抛物线的简单性质,考查导数知识,正确运用抛物线的定义是关键3
21、【答案】C【解析】解:命题“设 a、b、c R,若 ac2bc 2,则 c20,则 ab”为真命题;故其逆否命题也为真命题;由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛
22、 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)其逆命题为“设 a、b、c R,若 ab,则 ac2bc
23、 2”在 c=0 时不成立,故为假命题故其否命题也为假命题故原命题及其逆命题、否命题、逆否命题中,真命题的个数为 2 个故选 C【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键4 【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为 a,b,c, =0,M 点的轨迹是以原点 O 为圆心,半焦距 c 为半径的圆又 M 点总在椭圆内部,该圆内含于椭圆,即 cb,c 2b 2=a2c2e 2= , 0e 故选:C【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答5 【答案】A【解析】解:由已知得到如图
24、由 = = = ;故选:A【点评】本题考查了向量的三角形法则的运用;关键是想法将向量 表示为 6 【答案】A【解析】解:令 x1=0,解得 x=1,代入 f(x)=4+a x1得, f(1)=5,则函数 f(x)过定点(1,5)由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了
25、研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛
26、 E 的像的光路图。(D 点为小明眼睛所在位置)故选 A7 【答案】 D【解析】解:在正方体中,ACBD,AC平面 B1D1DB,BE 平面 B1D1DB,ACBE,故 A 正确;平面 ABCD平面 A1B1C1D1,EF平面 A1B1C1D1,EF平面 ABCD,故 B 正确;EF= ,BEF 的面积为定值 EF1= ,又 AC平面 BDD1B1,AO 为棱锥 ABEF 的高,三棱锥 ABEF 的体积为定值,故 C 正确;利用图形设异面直线所成的角为 ,当 E 与 D1重合时 sin= , =30;当 F 与 B1重合时 tan= ,异面直线 AE、BF 所成的角不是定值,故 D 错误;故选
27、 D8 【答案】C【解析】解:由于 f(x)=x 22ax 的对称轴是直线 x=a,图象开口向上,故函数在区间(,a 为减函数,在区间a,+)上为增函数,又由函数 f(x)=x 22ax,x1,+ )是增函数,则 a1故答案为:C9 【答案】C【解析】解:概率 P(K 26.635)0.01,两个变量有关系的可信度是 10.01=99%,即两个变量有关系的概率是 99%,故选 C由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B
28、应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小
29、明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题10【答案】 C【解析】【专题】排列组合【分析】不考虑特殊情况,共有 种取法,其中每一种卡片各取三张,有 种取法,两种红色卡片,共有 种取法,由此可得结论【解答】解:由题意,不考虑特殊情况,共有 种取法,其中每一种卡片各取三张,有 种取法,两种红色卡片,共有 种取法,故所求的取法共有 =5601
30、672=472故选 C【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题11【答案】B【解析】解:由约束条件 作出可行域如图,联立 ,得 A(a,a),联立 ,得 B(1,1),化目标函数 z=2x+y 为 y=2x+z,由图可知 zmax=21+1=3,z min=2a+a=3a,由 6a=3,得 a= 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_
31、。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运
32、动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)故选:B【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题12【答案】B【解析】解:模拟执行程序框图,可得k=1S=1满足条件 k5,S=3,k=2满足条件 k5,S=8,k=3满足条件 k5,S=19,k=4满足条件 k5,S=42,k=5不满足条件 k5,退出循环,输出 S 的值为 42故选:B【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的 S,k 的值是解题的关键,属于基础题二、填空题13【答案】 1e【解析】
33、解析: 由 得 ,如图所有实数对 表示的区域的面积为 ,满足条件“ ”lnabae(,)abeabe的实数对 表示的区域为图中阴影部分,其面积为 ,随机事件“ ”的概率(,) 1100|aed ln为 1e14【答案】 m 2 【解析】解:集合 A=x|x+m0=x|xm,全集 U=R,所以 CUA=x|x m,又 B=x|2x4,且( UA)B= ,所以有m2,所以 m2故答案为 m215【答案】【解析】由框图的算法功能可知,输出的数为三个数的方差,则 。16【答案】 (1,2) 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实
34、验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让
35、它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【解析】解:f(x)=log ax(其中 a 为常数且 a0,a1)满足 f(2)f(3),0 a1,x 0,若 f(2x 1)f(2x),则 ,解得:1x2,故答案为:(1,2)【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题17【答案】 【解析】设 A(1,1),B(
36、1, 1),则直线 AB 过原点,且阴影面积等于直线 AB 与圆弧所围成的弓形面积 S1,由图知, ,又 ,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题18【答案】1【解析】试题分析:两直线垂直满足 ,解得 ,故填:1.02-1a1a考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时, ,当两直线垂直时,需满足 ,当两直线平行0:11cybxal :22cybxl 021ba时,需满足 且 ,或是 ,当直线是斜截式直线方程时,两直线垂直2a112121cba,两直线平行时, , .121k2k三、解答题由于玻璃板的两面间具有一定
37、的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行
38、实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)19【答案】 【解析】解:(1)由 an+1= ,可得 a2= = ,a 3= = ,a4= = = (2)猜测 an= (nN *)下面用数学归纳法证明:当 n=1 时,左边=a 1=a,右边= =a,猜
39、测成立假设当 n=k(kN *)时猜测成立,即 ak= 则当 n=k+1 时,a k+1= = =故当 n=k+1 时,猜测也成立由,可知,对任意 nN *都有 an= 成立20【答案】 【解析】解:(1)证明:因为 PD平面 ABCD,BC 平面 ABCD,所以 PDBC由BCD=90,得 CDBC,又 PDDC=D, PD、DC平面 PCD,所以 BC平面 PCD因为 PC平面 PCD,故 PCBC由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛
40、 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同
41、学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)(2)(方法一)分别取 AB、PC 的中点 E、F,连 DE、DF,则:易证 DECB,DE平面 PBC,点 D、E 到平面 PBC 的距离相等又点 A 到平面 PBC 的距离等于 E 到平面 PBC 的距离的 2 倍由(1)知:BC平面 PCD,所以平面 PBC平面 PCD 于 PC,因为 PD=DC,PF=FC,所以 DFPC,所以 DF平面 PBC 于 F易知 DF
42、= ,故点 A 到平面 PBC 的距离等于 (方法二)等体积法:连接 AC设点 A 到平面 PBC 的距离为 h因为 ABDC ,BCD=90,所以ABC=90从而 AB=2,BC=1,得ABC 的面积 SABC =1由 PD平面 ABCD 及 PD=1,得三棱锥 PABC 的体积 因为 PD平面 ABCD,DC平面 ABCD,所以 PDDC又 PD=DC=1,所以 由 PC BC,BC=1,得PBC 的面积 由 VAPBC=VPABC, ,得 ,故点 A 到平面 PBC 的距离等于 【点评】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力21【答案】 【解析】解:(1)设圆的方程为 x2+y2+Dx+Ey+F=0圆的方程为 x2+y28y9=0(2)直线 CD 与圆 M 相切 O、D 分别是 AB、BR 的中点则 ODAR,CAB=DOB,ACO= COD,又CAO=ACO,DOB=COD又 OC=OB,所以BODCODOCD=OBD=90即 OCCD ,则直线 CD 与圆 M 相切 (其他方法亦可)由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较