收藏 分享(赏)

民丰县高级中学2019-2020学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:8424573 上传时间:2019-06-25 格式:DOC 页数:17 大小:529.50KB
下载 相关 举报
民丰县高级中学2019-2020学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共17页
民丰县高级中学2019-2020学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共17页
亲,该文档总共17页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变

2、蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)民丰县高级中学 2019-2020 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 如图 RtOAB是一平面图形的直观图,斜边 OB=2,则这个平面图形的面积是

3、( )A B1 C D2 数列a n满足 a1=3,a nanan+1=1,A n表示a n前 n 项之积,则 A2016的值为( )A B C 1 D13 设集合 S=|x|x 1 或 x5,T=x|axa+8 ,且 ST=R,则实数 a 的取值范围是( )A3 a 1 B 3a1 Ca 3 或 a1 Da3 或 a 14 数列a n满足 an+2=2an+1an,且 a2014,a 2016是函数 f(x)= +6x1 的极值点,则log2(a 2000+a2012+a2018+a2030)的值是( )A2 B3 C4 D55 在定义域内既是奇函数又是减函数的是( )Ay= By= x+C

4、y= x|x| Dy=6 已知集合 ,则A0 或B0 或 3 C1 或 D1 或 37 已知直线 与圆 交于 两点, 为直线 上任410mxy: 2()4Cxy: AB、 P340nxy:意一点,则 的面积为( )PAB由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面

5、镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的

6、像的光路图。(D 点为小明眼睛所在位置)A B. C. D. 23323438 用反证法证明命题“a,b N,如果 ab 可被 5 整除,那么 a,b 至少有 1 个能被 5 整除”则假设的内容是( )Aa,b 都能被 5 整除 Ba,b 都不能被 5 整除Ca, b 不能被 5 整除 Da,b 有 1 个不能被 5 整除9 已知 f(x)=m2 x+x2+nx,若x|f(x)=0=x|f(f (x)=0,则 m+n 的取值范围为( )A(0,4) B0,4) C(0,5 D0 ,510函数 f(x)= ,则 f( 1)的值为( )A1 B2 C3 D411若实数 x,y 满足不等式组 则 2

7、x+4y 的最小值是( )A6 B6 C4 D212双曲线 的渐近线方程是( )A B C D二、填空题13已知定义域为(0,+)的函数 f(x)满足:(1)对任意 x(0,+),恒有 f(2x)=2f(x)成立;(2)当 x(1,2时,f(x) =2x给出如下结论:对任意 mZ,有 f(2 m) =0; 函数 f(x)的值域为0,+);存在 nZ,使得 f(2 n+1)=9;“函数 f(x)在区间(a,b)上单调递减”的充要条件是“ 存在 kZ,使得(a,b)(2 k,2 k+1)” ;其中所有正确结论的序号是 14 的展开式中,常数项为_(用数字作答)81()x【命题意图】本题考查用二项式

8、定理求指定项,基础题.15【盐城中学 2018 届高三上第一次阶段性考试】已知函数 f(x)= ,若函数210 ()xe由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A

9、 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)y=f(f (x)a)1 有三个零点,则 a 的取值范围是_

10、16【泰州中学 2018 届高三 10 月月考】设函数 ,其中 ,若存在唯一的整21xfeax1a数 ,使得 ,则 的取值范围是 00f17下列四个命题申是真命题的是 (填所有真命题的序号)“pq 为真” 是 “pq 为真”的充分不必要条件;空间中一个角的两边和另一个角的两边分别平行,则这两个角相等;在侧棱长为 2,底面边长为 3 的正三棱锥中,侧棱与底面成 30的角;动圆 P 过定点 A( 2,0),且在定圆 B:(x 2) 2+y2=36 的内部与其相内切,则动圆圆心 P 的轨迹为一个椭圆18已知圆 O:x 2+y2=1 和双曲线 C: =1(a0,b0)若对双曲线 C 上任意一点 A(点

11、 A 在圆 O外),均存在与圆 O 外切且顶点都在双曲线 C 上的菱形 ABCD,则 = 三、解答题19已知2x2, 2y2,点 P 的坐标为(x,y)(1)求当 x,yZ 时,点 P 满足(x 2) 2+(y 2) 24 的概率;(2)求当 x,yR 时,点 P 满足(x2) 2+(y2) 24 的概率20已知函数 f(x)=sin(x+)(0,02)一个周期内的一系列对应值如表:由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛

12、B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像

13、,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)x 0y 1 0 1(1)求 f(x)的解析式;(2)求函数 g(x)=f(x)+ sin2x 的单调递增区间21设 M 是焦距为 2 的椭圆 E: + =1(ab0)上一点,A、B 是椭圆 E 的左、右顶点,直线MA 与 MB 的斜率分别为 k1,k 2,且 k1k2= (1)求椭圆 E 的方程;(2)已知椭圆 E: + =1(ab0)上点 N(x 0,y 0)处切线方程为 + =1,若P

14、 是直线 x=2 上任意一点,从 P 向椭圆 E 作切线,切点分别为 C、D ,求证直线 CD 恒过定点,并求出该定点坐标22在锐角三角形 ABC 中,内角 A,B ,C 所对的边分别为 a,b,c,且 2csinA= a(1)求角 C 的大小;(2)若 c=2,a 2+b2=6,求ABC 的面积由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中

15、,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。

16、(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)23已知 f()= ,(1)化简 f(); (2)若 f()=2,求 sincos +cos 2 的值24已知函数 f(x)=ax 22lnx()若 f(x)在 x=e 处取得极值,求 a 的值;()若 x(0,e,求 f( x)的单调区间;() 设 a ,g(x)=5+ln , x1,x 2(0,e,使得 |f(x 1) g(x 2)|9 成立,求 a 的取值范围由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验

17、效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它

18、与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)民丰县高级中学 2019-2020 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】解:RtOAB是一平面图形的直观图,斜边 OB=2,直角三角形的直角边长是 ,直角三角形的面积是 ,原平面图形的面积是 12 =2故选 D2 【答案】D【解析】解:a 1=3,a n

19、anan+1=1, ,得 , ,a 4=3,数列 an是以 3 为周期的周期数列,且 a1a2a3=1,2016=3672,A2016 =(1) 672=1故选:D3 【答案】A【解析】解:S=|x|x 1 或 x5,T=x|axa+8 ,且 ST=R , ,解得: 3a 1故选:A【点评】本题考查并集及其运算,关键是明确两集合端点值间的关系,是基础题4 【答案】C【解析】解:函数 f(x)= +6x1,可得 f(x )=x 28x+6,a 2014,a 2016是函数 f(x)= +6x1 的极值点,a 2014,a 2016是方程 x28x+6=0 的两实数根,则 a2014+a2016=

20、8数列a n中,满足 an+2=2an+1an,由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填

21、“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)可知a n为等差数列,a 2014+a2016=a2000+a2030,即 a2000+a2012+a2018+a2030=16,从

22、而 log2(a 2000+a2012+a2018+a2030)=log 216=4故选:C【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键5 【答案】C【解析】解:A. 在定义域内没有单调性, 该选项错误;B. 时,y= ,x=1 时,y=0;该函数在定义域内不是减函数,该选项错误;Cy= x|x|的定义域为 R,且 (x)| x|=x|x|=( x|x|);该函数为奇函数;该函数在0,+),(,0)上都是减函数,且0 2=02;该函数在定义域 R 上为减函数, 该选项正确;D. ;0+1 01;该函数在定义域 R 上不是减函数, 该选项错误故选:C【点评

23、】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性6 【答案】 B【解析】 ,故 或 ,解得 或 或 ,又根据集合元素的互异性 ,所以或 。7 【答案】 C 【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心 到直线 的距离 , ,两平行直线 之间的距离为 ,m1d2| 3ABrdmn、 3d由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_

24、(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻

25、璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)的面积为 ,选 CPAB1|32d8 【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证命题“ a,bN,如果 ab 可被 5 整除,那么 a,b 至少有 1 个能被 5 整除”的否定是“ a,b 都不能被 5 整除”故应选 B【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧9 【答案】B【解析】解:设 x1x|f

26、(x)=0=x|f (f(x)=0,f(x 1)=f(f(x 1)=0,f(0)=0 ,即 f(0)=m=0,故 m=0;故 f(x)=x 2+nx,f(f(x)=(x 2+nx)(x 2+nx+n)=0,当 n=0 时,成立;当 n0 时,0, n 不是 x2+nx+n=0 的根,故=n 24n0,故 0n4;综上所述,0n+m4;故选 B【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题10【答案】A【解析】解:由题意可得 f( 1)=f(1+3)=f(2)=log 22=1故选:A【点评】本题考查分度函数求值,涉及对数的运算,属基础题11【答

27、案】B由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次

28、改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【解析】解:作出不等式组对应的平面区域如图:设 z=2x+4y 得 y= x+ ,平移直线 y= x+ ,由图象可知当直线 y= x+ 经过点 C 时,直线 y= x+ 的截

29、距最小,此时 z 最小,由 ,解得 ,即 C(3,3),此时 z=2x+4y=23+4( 3)=6 12=6故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键12【答案】B【解析】解:双曲线标准方程为 ,其渐近线方程是 =0,整理得 y= x故选:B【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1” 为“0” 即可求出渐近线方程属于基础题由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B

30、应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小

31、明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)二、填空题13【答案】 【解析】解:x(1,2时,f(x)=2xf(2)=0 f(1)= f(2) =0f(2x)=2f(x),f(2 kx)=2 kf(x)f(2 m)=f(22 m1)=2f(2 m1)=2 m1f(2)=0 ,故正确;设 x(2,4时,则 x(1,2,f (x)=2f( )=4 x0若 x(4,8时,则 x(2,4 ,f(x)=2f( )=8x0一般地当 x(2 m,2 m

32、+1),则 (1,2,f(x)=2 m+1x0,从而 f(x)0,+),故正确;由知当 x(2 m,2 m+1), f(x)=2 m+1x0,f(2 n+1)=2 n+12n1=2n1,假设存在 n 使 f(2 n+1)=9,即 2n1=9,2 n=10,nZ,2 n=10 不成立,故错误;由知当 x(2 k,2 k+1)时,f(x)=2 k+1x 单调递减,为减函数,若(a,b)(2 k,2 k+1)” ,则“ 函数 f(x)在区间(a,b)上单调递减” ,故正确故答案为:14【答案】 70【解析】 的展开式通项为 ,所以当 时,常数项为81()x8821()1rrrrrTCxCx4.48)

33、C15【答案】 3e, )【解析】当 x0 时,由 f(x )1=0 得 x2+2x+1=1,得 x=2 或 x=0,由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A

34、的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)当 x0 时,由 f(x)1=0 得 ,得 x=0,10xe由

35、,y=f(f(x)a)1=0 得 f(x)a=0 或 f(x)a=2,即 f(x)=a ,f(x)=a2,作出函数 f(x)的图象如图:y= 1(x0),ey= ,当 x(0,1)时,y0,函数是增函数,x(1,+ )时,y0,函数是减函数,xx=1 时,函数取得最大值: ,e当 1a2 时,即 a (3,3+ )时,y=f(f(x)a)1 有 4 个零点,e当 a2=1+ 时,即 a=3+ 时则 y=f(f(x)a)1 有三个零点,当 a3+ 时,y=f(f(x) a)1 有 1 个零点e当 a=1+ 时,则 y=f(f(x)a )1 有三个零点,1当 时,即 a(1+ ,3)时,y=f(f

36、 (x)a)1 有三个零点 2eae综上 a ,函数有 3 个零点13, )故答案为: 1e, )点睛:已知函数有零点求参数取值范围常用的方法和思路由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不

37、能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)(1)直接法:直接根据题设条件构

38、建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函 数的图象,然后数形结合求解16【答案】【解析】试题分 析:设 ,由题设可知存在唯一的整数 ,使得 在直线0x的下方.因为 ,故当 时, ,函数 单调递减; 当 时, ,函数 单调递增;故 ,而当 时,故当 且 ,解之得 ,应填答案.3,12e考点:函数的图象和性质及导数知识的综合运用【易错点晴】本题以函数存在唯一的整数零点 ,使得 为背景,设置了一道求函数解析式中的参数0x0fx的取值范围问题,目的是考查函数的图象和性质

39、及导数在研究函数的单调性最值等有关知识的综合运用.同时也综合考查学生运用所学知 识去分析问题解决问题的能力.求解时先运用等价转化得到数学思想将问题等价转化为存在唯一的整数 ,使得 在直线 的下方.然后再借助导数的知识求出函数的最小值,0x依据题设建立不等式组求出解之得 .17【答案】 【解析】解:“ pq 为真” ,则 p,q 同时为真命题,则“pq 为真” ,当 p 真 q 假时,满足 pq 为真,但 pq 为假,则“ pq 为真”是“ pq 为真”的充分不必要条件正确,故正确;空间中一个角的两边和另一个角的两边分别平行,则这两个角相等或互补;故错误,设正三棱锥为 PABC,顶点 P 在底面

40、的射影为 O,则 O 为ABC 的中心,PCO 为侧棱与底面所成角正三棱锥的底面边长为 3,CO=侧棱长为 2,在直角POC 中,tan PCO=侧棱与底面所成角的正切值为 ,即侧棱与底面所成角为 30,故 正确,由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成

41、的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光

42、路图。(D 点为小明眼睛所在位置)如图,设动圆 P 和定圆 B 内切于 M,则动圆的圆心 P 到两点,即定点 A(2,0)和定圆的圆心B(2,0)的距离之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=64=|AB|点 P 的轨迹是以 A、B 为焦点的椭圆,故动圆圆心 P 的轨迹为一个椭圆,故正确,故答案为:18【答案】 1 【解析】解:若对双曲线 C 上任意一点 A(点 A 在圆 O 外),均存在与圆 O 外切且顶点都在双曲线 C 上的菱形 ABCD,可通过特殊点,取 A(1,t),则 B(1,t),C(1,t ),D(1,t ),由直线和圆相切的条件可得,t=1将 A(1,1)代入双曲线方程,可得 =1故答案为:1【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题三、解答题由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报