收藏 分享(赏)

球的体积教案.doc

上传人:精品资料 文档编号:8366251 上传时间:2019-06-22 格式:DOC 页数:10 大小:107KB
下载 相关 举报
球的体积教案.doc_第1页
第1页 / 共10页
球的体积教案.doc_第2页
第2页 / 共10页
球的体积教案.doc_第3页
第3页 / 共10页
球的体积教案.doc_第4页
第4页 / 共10页
球的体积教案.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、球的体积教案教学目的通过“球的体积”的教学,不仅要求学生熟记球的体积公式,更要培养学生观察、估算、猜想、构造和论证能力并注意完善学生的认知结构若只要求学生记住有关公式,剩下的就是反复练习解几个一元方程;已知半径求体积;已知体积求半径,;这是降低教学要求教学过程师:(板书) 已知球的半径为 R,求 V 球 =?(出示小黑板图 1)思维从问题开始师:为了计算半径为 R 的球的体积,可以先计算半球的体积 V 半球 观察图 1,你一定能在 V 圆柱 、V 半球 、V 圆锥 这三个量之间正确地写上不等符号(学生完成),得V 圆柱 V 半球 V 圆锥 提供类比,让学生目测大小,温故而知新,用以强化认识过程

2、向 “量化”过渡你能猜测 V 半球 =?引诱学生猜想猜想是发现的开始!生:师:可以大胆一些,准许猜错(此答案不一定出自成绩最好的学生,而是胆大者,思维活跃者)既鼓励,又提出更高要求,使学生仍处于激奋境地(用行动支持敢于大胆猜想的学生)师:我们不妨做一个试验,用以验证这个猜想理、化有实验,数学也可以有实验美国盛行“数学实验数学法”,这对激发学生学习兴趣,培养学习能力都十分有利(取一个半径为 R 的半球面,再取半径和高都是 R 的圆桶和圆锥各一个,都是铁皮制成的容器将圆锥放入圆桶内(图 2),再将半球容器装满细沙,然后把半球内的细沙倒入圆桶内,发现圆桶恰好被装满)师:你能将实验结果用一个等式表达出

3、来吗?鼓励学生将实验结果“量化”(构造一个等式)是十分重要的数学方法生甲:(板书)V 圆柱 V 圆锥 =V 半球 生乙:(板书)V 半球 =V 圆柱 V 圆锥师:于是得(板书)且 V 圆柱 V 半球 V 圆锥 =321师:中学数学是建立在推理的基础上的,实验结果是否可靠,还要进行论证才行中学理、化是建立在实验基础上的用数学工具去证明实验结果,学生兴趣盎然师:我们现在的任务是证明这个实验结果或者说,是要证明图 2 右边充满细沙的几何体与左边充满细沙的半球是等积形而右边几何体的体积是已知的(板书)如果再能证明它又符合祖暅原理中的“条件”,我们就可以将它作为半球的参照体了(为了运用祖暅原理,所引入的

4、几何体必须符合两个条件:一是它的计算公式是已知的;二是它符合祖暅原理的条件,即该几何体与原几何体要夹在两个平行平面之间,且用平行于这两个平面的任意一个平面去截时,截得的截面面积总相等,符合以上两个条件的几何体可叫做原几何体的参照体在前面推导柱、锥的体积的多次教学中应该引用这个术语,让学生熟悉祖暅原理与该术语的关系)该几何体与半球同高(R),这说明它与半球可以夹在两个平行平面之间,剩下的问题是要证明它与半球的等距截面的面积相等用与底面平行的任一平面去截图 2 的两个几何体(图 3),截面分别是圆面和圆环R,小圆半径为 l,因此S 圆 =r 2=(R 2l 2),S 圆环 =R 2l 2=(R 2

5、l 2),所以 S 圆 =S 环 根据祖暅原理,这两个几何体的体积相等,即由此,“猜想”得到证明,可以写成定理形式:从猜想到证明是“质”的升华!是学习数学的最重要的素质定理:如果球的半径是 R,那么它的体积是师:你准备怎样记忆这个结论呢?不管是意义识记或是机械识记,在这里都是有效的,都是可行的根据各个学生的学习习惯,不必强求一律生甲:根据“细沙实验”,生乙:我只要记住V 圆柱 V 半球 V 圆锥 =321 就行了师:还有其他的记忆方法吗?例如,把球体视为拟柱体,采用拟柱体的体积公式试试看数学教师要不要培养学生的记忆能力,这是有争议的看来,数学教师有可能,也有必要去培养学生的记忆能力生:(板演)

6、(随时复习与应用拟柱体体积公式)师:这能作为球体积公式的证明吗?生:球体不是拟柱体,不能作为证明,但可以作为一种记忆方法师:还有其他的记忆方法吗?例如,将球体分割成许多小的锥体,球心是这些小锥体的顶点,锥的底面不是平面,而是球面的一小部分(是曲面)请看图 4是重要的数学思想于是,V 球 =许多小锥体之和,而这许多小锥体的高可视为球半径 R又因为所有小锥体的底面之和=球面积=4R 2,所以发展学生的空间想象能力同样,这也不能作为球体积公式的证明但是,使人感到兴趣的是,拟柱体、小锥体与球体的这种“默契”,这种内部的一致,给人们以合谐的感觉,它不仅帮助人们记忆,还给人以和谐美的感受!升华了!师:现在

7、再请大家自己解答一个问题:(板书)不十分困难的例题由学生自己解答,然后再对照课本并进行议论,有时比教师直接讲解要收效大些,不妨一试有一种空心钢球,重 142 g,测得外径等于 5.0 cm,求它的内径(钢比重是7.9g/cm3)师:这是课本的例题,解完后自行对照课本(学生议论,同时由一位学生板演)师:今天这堂课的关键是构造一个球的参照体,而“细沙实验”帮助我们解决了这个问题你能离开实验,经过分析直接构造这个参照体吗?(代替小结,将课内效果引向课外直接构造参照体)教案说明这份教案显然是写给别人看的,如果只是为了自己教学,我想,只要记下教学过程就行了:(1)提出问题: V 球 =?(2)自测圆柱、

8、半球、圆锥这三者之间的大小关系(图 1)(4)细沙实验 验证“猜想”(5)构造参照体,证明 “猜想”(6)得定理、谈记忆(7)例题、小结、作业我为什么要采取上面这几个环节?理由如下:目前的数学教材是从少数公理和原理出发,通过演绎,将知识展开于是,过程(1)(4)都可以省略并且, “参照体”也是由教材直接给出的(不需要构造)师生的和方法用定论的形式直接呈现在学生面前,新、旧知识的衔接点直接给出,内化任务很快就完成因此,这种做法的优点是直截了当,节约时间;缺点是学生缺乏一个完整的认识过程,把知识或方法不是作为“过程”而是作为“结果”直接抛给学生长此以往,越“抛”越多,学生头脑中很难形成一个有效的认

9、知结构,结果成绩分化,出现大量差生反之,插入环节(1)(4),则环节(5)的“构造参照体”( 这是全课的关键)就十分自然从“目测”到“猜想”,这是“发现”;从“猜想”到“实验”,这是强化“发现”,而环节(5)则是内化这种先发现后内化的过程又是在教师指导下进行的,教师的主导作用和学生的学习积极性十分融洽“目测”、“大胆猜想”、“实验”等环节,所有差生都有发言权,优生也不乏味;从“实验”到“构造参照体”,随流而下,直闯关键(出现参照体),终达彼岸(得定理)最后 “谈记忆”,生动活泼,乃至升华;“小结提问”,余味不尽数学教学的实质是思维过程的教学,“直截了当”则掩盖了“思维过程”,把知识和方法不是作

10、为思维过程暴露在学生面前,而是作为结果抛给学生,这种“奉送”的做法势必回避了数学思想的培养长此以往,学生的数学素质很难得到提高最后,还要说明一点,“构造参照体”是本课的难点,本教案采用了“细沙实验”,也就回避了“构造性困难”,因此本教案是为普通班设计的而“好班”就不应该回避构造困难,何况“构造参照体”是运用祖暅原理的关键,也是学习这一段教材(从柱体开始)的关键所在因此,建议根据学生情况补充下述内容:参照体与祖暅原理为了利用祖暅原理计算某个几何体的体积,常要构造另一个几何体,此几何体必须符合两个条件:(1)它的计算公式是已知的;(2) 它符合祖暅原理的条件,即该几何体与原几何体能夹在两个平行平面

11、之间,且用平行于这两个平面的任意一个平面去截它们时,截得的截面面积总相等为了下面的叙述方便起见,把符合这两个条件的几何体叫做原几何体的参照体,或简称参照体用祖暅原理求几何体的体积,关键在于构造参照体轴,求该旋转体的体积解 将此旋转体放在平面 上(图 5),用与平面 平行且相距 h 的平面去截,得这说明参照体的截面可以是一个矩形,其一边长 ,另一边长为变量 h于是得例 2 求半径为 R 的半球的体积例 3 汽车内胎或游泳时用的救生圈是旋转体(图 6),它的母线是半径为 r 的圆,圆心与旋转轴 MN 的距离等于 d(dr),能否用构造参照体的思想方法去寻求它的体积公式?解 取环体的上半部研究,它的下底面是圆环(图 6,外半径=d+r,内半径=dr) ,上底是半径为 d 的圆周(面积为零),半环体的高为 r用平行于底面的平面去截,设截面距底面 h(hr),则截面是另一个圆环( 图 7)(变量),据此,可构造一个参照体如下:取一个半径为 r 的圆为底面,高为 4d 的圆柱的 1/4,并将此 1/4 圆柱横卧(图 8),此参照体的体积为圆柱的 1/4,由祖暅原理此结论与直觉是一致的:将环体沿断面(图 6 中的小圆)切开后,拉直成一个圆柱,培养学生的直觉思维能力

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报