1、1单相全波整流电路的设计摘要随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。但是晶杂管相控整流电路中随着触发角 的增大,电流中谐波分量相应增大,因此功率因素很低。把逆变电路中的 SPWM 控制技术用于整流电路,就构成了 PWM 整流电路。通过对 PWM 整流电路的适当控制,可以使其输入电流非常接近正弦波,且和输入电压同相位,功率因素近似为 1。这种整流电路称为高功率因素整流器,它具有广泛的应用前景。电力电子器件是电
2、力电子技术发展的基础。正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。而二十世纪九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。关键词:电力电子,整流电路23目录1 设计任务 .41.1 设计目的 .41.2 设计内容 .41.3 设计要求 42 设计内容 52.1 基本原理介绍 52.2 电路设计的经济性论证
3、 .62.3 主电路设计 .62.3.1 触发电路 62.3.2 形成与脉冲放大环节 82.3.2 锯齿波形成与脉冲移相环节 82.3.3 驱动电路 .92.3.4 保护电路 .93 参数设定 113.1180调压 .113.2 移相调压 .134 参数计算 .154.1 计算公式 .154.2 参数选择: .164.3 计算:T=1/f=1/50=0.02s 165 仿真 175.1 触发角为 30 度 .175.2 触发角为 90 度 .185.3 触发角为 120 度 196 波形分析 21心得体会 .22参考文献 .2341 设计任务1.1 设计目的电力电子技术课程设计是在教学及实验基
4、础上,对课程所学理论知识的深化和提高。因此,要求同学能综合应用所学知识,设计出具有电压可调功能的直流电源系统,能够较全面的巩固和应用本课程中所学的基本理论和基本方法,并初步掌控整流电路分析的基本方法。培养学生独立思考、独立收集资料、独立设计的能力;培养分析、总结及撰写技术报告的能力。1.2 设计内容在充分理解单相全波整流电路工作原理的基础上,设计出单相全波整流电路带电阻负载、阻感负载时的电路原理图,使用 PSIM 软件对所设计的电路带不同负载的情况下晶闸管取三个不同的触发角(要求 90,=90和90各取一个角度)进行仿真,分别获得 Ud、Id、UVT、IVT、I2 波形,并对所给出的角度计算上
5、述数值。1.3 设计要求1)设计出合理的整流电路图。2)选择不同触发角度,仿真出波形并作计算。3)给出详细的仿真过程描述和详细的计算步骤和过程。52 设计内容2.1 基本原理介绍单相全波整流电路如图 2-1 所示,图中 Tr 为电源变压器,它的作用是将交流电网电压 V1 变成整流电路要求的交流电压,Rl 是要求的直流供电的负载电阻。图 2-1 原理图单相全波整流电路的工作原理可分析如下。为简单起见,晶闸管用理想模型来处理,即正向导通电阻为零,反向电阻为无穷大。在 v2 的正半周,电流从电压器副边线圈的上端流出,只能经过 VT1 流向 Rl,在负载上产生一个极性为上正下负的输出电压。在 v1 的
6、负半周,其极性与图示相反,电流从变压器副边线圈的下端流出,只能经过 VT2 流向 Rl,电流流过 Rl 时产生的电压极性仍是上正下负,与正半周时相同。图 2-2 工作波形根据上述分析,可得单相全波整流电路的工作波形如图 2-2 所示。由图可见,通过负载 Rl 的电流 il 以及电压 vl 的波形都是单方向的全波脉动波形。62.2 电路设计的经济性论证1)单相全波整流电路中的变压器的二次绕组带中心抽头,结构较复杂。绕组及铁心对铜、铁等材料的消耗比单项全控桥多,在有色金属资源有限的情况下,这是不利的。2)单相全波整流电路中只用两个晶闸管,比单项全控桥式可控整流电路少两个,相应的,晶闸管的门极驱动电
7、路也少两个,但是在单相全波整流电路中,晶闸管承受的最大电压使单相全控桥式整流电路的两倍。3)单相全波整流电路中,导电回路只含一个晶闸管,比单项桥式少一个,因而也少了一次管压降。从上述 2) 、3)考虑,同时其纹波电压较小,因电源变压器在正负半周内都有电流供给负载,电源变压器得到了充分的利用,效率较高,所以单相全波整流电路适宜于在地输出电压的场合。2.3 主电路设计主电路如图 2-3 所示:图 2-3 主电路图2.3.1 触发电路晶闸管最重要的特性是可控的正向导通特性.当晶闸管的阳极加上正向电压后,还7必须在门极与阴极之间加上一个具有一定功率的正向触发电压才能打通, 这一正向触发电压的导通是由触
8、发电路提供的,根据具体情况这个电压可以是交流、直流或脉冲电压。由于晶闸管被触发导通以后,门极的触发电压即失去控制作用,所以为了减少门极的触发功率,常常用脉冲触发。触发脉冲的宽度要能维持到晶闸管彻底导通后才能撤掉,晶闸管对触发脉冲的幅值要求是:在门极上施加的触发电压或触发电流应大于产品提出的数据,但也不能太大,以防止损坏其控制极,在有晶闸管串并联的场合,触发脉冲的前沿越陡越有利于晶闸管的同时触发导通。为了保证晶闸管电路能正常,可靠的工作,触发电路必须满足以下要求:触发脉冲应有足够的功率,触发脉冲的电压和电流应大于晶闸管要求的数值,并留有一定的裕量。由闸管的门极伏安特性曲线可知,同一型号的晶闸管的
9、门极伏安特性的分散性很大,所以规定晶闸管元件的门极阻值在某高阻和低阻之间,才可能算是合格的产品。晶闸管器件出厂时,所标注的门极触发电流 Igt、门极触发电压 U 是指该型号的所有合格器件都能被触发导通的最小门极电流、电压值,所以在接近坐标原点处以触发脉冲应一定的宽度且脉冲前沿应尽可能陡。由于晶闸管的触发是有一个过程的,也就是晶闸管的导通需要一定的时间。只有当晶闸管的阳极电流即主回路电流上升到晶闸管的掣住电流以上时,晶闸管才能导通,所以触发信号应有足够的宽度才能保证被触发的晶闸管可靠的导通,对于电感性负载,脉冲的宽度要宽些,一般为 0.51MS,相当于 50HZ、18 度电度角。为了可靠地、快速
10、地触发大功率晶闸管,常常在触发脉冲的前沿叠加上一个触发脉冲。触发脉冲的相位应能在规定范围内移动。例如单相全控桥式整流电路带电阻性负载时,要求触发脉冲的移项范围是 0 度180 度,带大电感负载时,要求移项范围是 0度90 度;三相半波可控整流电路电阻性负载时,要求移项范围是 0 度90 度。同步电压:来自同步电源(同步电源变压器),经锯齿波形成电路,得到与电源同步的锯齿波电压。缺少同步电压则不能形成锯齿波电压,将无触发脉冲;锯齿波电压:锯齿波电压与控制电压,偏移电压叠加,在其交叉点形成触发脉冲;没有锯齿波电压,也将无触发脉冲;控制电压:工作时,控制其大小,实现在需要的范围内移相;偏移电压:与控
11、制电压叠加,以确定控制电压为零时,触发脉冲的初始位相位。如果缺少偏移电压,或偏移电压不当,将不能在需要的范围内移相。触发脉冲与主电路电源必须同步。为了使晶闸管在每一个周期都以相同的控制角 a 被触发导通,触发脉冲必须与电源同步,两者的频率应该相同,而且要有固定的相位关系,以使每一周期都能在同样的相位上触发。触发电路同时受控于电压 uc 与同步电压 us 控制。晶闸管的触发条件:(1)晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通;8(2)晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管都才能导通;(3)晶闸管一旦导通门极旧失去控制作用;(4)要使晶闸管关断,只能使其电流小
12、到零一下晶闸管的分类:晶闸管分为快速晶闸管,逆导晶闸管,双向晶闸管,光控晶闸管,门极可关断晶闸管(GTO) ,电力晶闸管(GTR) ,功率场效应晶闸管(MOSFET) ,绝缘珊双极晶闸管(IGBT) ,MOS 控制晶闸管,集成门极换向晶闸管.静电感应晶体管。2.3.2 形成与脉冲放大环节脉冲的形成环节由晶闸管 V4、V5 组成,V7、V8 组成脉冲功率放大环节。控制、电压 uct 和负偏移相电压 up 分别经过电阻 R6、R7、R8 并联接入 V4 基极。在分析该环节时,暂不考虑锯齿波电压 ue3 和负偏电压 up 对电路的影响。对控制电压 uct=0 时,V4截止,+15V 电源通过电阻 R
13、11 供给 V5 一个足够大的基极电流,使 V5 饱和导通,V5 的集电极电压接近-15V,所以 V7、V8 截止,无脉冲输出,同时,+15V 电源经 R9 和饱和晶体管 V5 及-15V 电源对电容 C3 进行充电,充电结束后,电容两端电压为 30V,其左端为+15V 右端为-15V。调节电压 uct,当 uct0.7V 时,V4 由截止变为饱和导通,其集电极 A 端 ua 由+15V 迅速下降至 1V 左右,由于电容 C3 上的电压不能突变,C3 右端的电压也开始的-15V 下降至-30V,V5 的基射结由于受到反偏而立即截止,其集电极电压uc5 由开始的-15V 左右迅速上升,当 uc5
14、2.1 时,V7、V8 导通,脉冲变压器一次侧流过电流,其二次侧有触发脉冲输出。同时,电容 C3 反向充电使 V5 的基极电压 ub5 由-30V 开始上升,当 ub5-15V,V5 又重新导通,uc5 又变成-15V,使 V7、V8 又截止,输出脉冲结束。可见,V4 导通的瞬间决定了脉冲发出的时刻,到 V5 截止时间即是脉冲的宽度,而 V5 截止时间的长短反向充电时间常数 R11C3 决定的。2.3.2 锯齿波形成与脉冲移相环节该环节主要由 V1、V2、V3、C2、VS 等元器件组成,锯齿波是由恒流源电流对 C2充电形成的。在图中,VS、RP2、R3、V1 组成了一个恒流源电路,恒流源电流
15、Ic1 对电容 C2 进行充电,电容 C2 两端的电压 uc2 为 uc2=可见,uc2 是随时间现性变化的,其充电斜率为。当 V2 导通时,由于电阻 R4 的阻值很少,所以,电容 C2 经 R4 及 V2 迅速放电,当 V2 周期性的关断与导通时,电容 C2 两端就得到了线性很好的锯齿波电压,要想改变锯齿波的斜率,只要改变充电电流的大小,即只要改变 RP2 的阻值即可。该锯齿波电压经过由 V3 管组成射极跟随器后,ue3 是一个与远波形相同的锯齿波电压。9Ue3、up、uct 三个信号通过电阻 R6、R7、R8 的综合作用成为 ub4,它控制 V4 的导通与关断。这里采用电工学课程中的叠加原
16、理,在考虑一个信号在 b4 点的作用时,可以将另外两个信号接地,而三个信号在 b4 点作用综合电压 ub4 才是控制 V4 的真正信号。当 uct=0 时,V4 的基极电压的 ub4 的波形有 ue3+up 决定,控制偏移电压 up 的大小。使锯齿波向下移动。当 uct 从 0 增加时,V4 的基极电位 ub4 的波形就由ue3+uct+up 决定,即当 ub40.7V 时的时刻,即 V4 由截止转为导通的时刻,也就是该时刻电路输出脉冲。如果把偏移电压 up 调整到某特定值而固定时,调节控制电压 uct就能改变 ub4 波形上升到 0.7V 的时间,也就是说,改变控制电压 uct 就可以改变移
17、动脉冲电压的相位,从而达到脉冲移相的目的。电路中设置负偏移电压 up 的目的是为了确定初始脉冲相位。通过三相桥式整流及逆变电路的分析可知:当负载大电感连续时,三相桥式整流电路的脉冲初始相位在控制角 a=90 的位置,对于可逆系统,电路需要在整流与逆变两种工作状态,这时需要脉冲的移相范围约为 180,考虑锯齿波电压波形两端的非线性,因此要求锯齿波底宽为 240,此时使脉冲初始位置调整到锯齿波的中点位置,对应主电路 a=90 位置。2.3.3 驱动电路典型全控型器件的驱动电路 GTO 是电流驱动型器件。它的导通控制与普通晶闸管相似,但对触发前沿的幅值和陡度要求较高,且一般需要在整个导通期间施加正向
18、门极电流。要使 GTO 关断则需施加反向门极电流,对其幅值和陡度的要求则更高,幅值需达到阳极电流的 1/3 左右,陡度需达 50A/ms,其中强负脉冲宽度约 30ms,负脉冲总宽度 100ms,关断后还需在门极-阴极间施加约 5V 的负偏压,以提高器件的抗干扰能力。GTO 一般用于大容量电流的场合,其驱动电路通常包括开通驱动电路、关断驱动电路和门极反偏电路三部分,可分为脉冲变压器耦合式和直流耦合式两种类型。直流耦合式驱动电路可避免电路内部的相互干扰和寄生振荡,可以得到较陡的脉冲前沿,因此目前应用较为广泛,其缺点是功耗大,效率低。直流耦合式 GTO 驱动电路的电源由高频电源经二极管整流后得到,二
19、极管 VD1 和电容 C1 提供+5V 电压,VD2、VD3、C2、C3 构成倍压整流电路,提供+15V 电压,VD4 和电容 C4 提供-15V 电压。场效应晶体管 V1 开通时,输出正强脉冲;V2 开通时,输出正脉冲平顶部分;V2 关断而 V3 开通时输出负脉冲;V3 关断后电阻 R3 和 R4 提供门极负偏压。2.3.4 保护电路1)过电压的产生及过电压保护电力电子装置中可能发生的过电压分为外因过电压和内因过电压两类。10a)外因过电压:主要来自雷击和系统中的操作过程等外部原因,包括:操作过电压:由分闸,合闸等开关操作引起的过电压,电网侧的操作过电压会由供电变压器电磁感应耦合,或由变压器
20、绕组之间的存在的分布电容静电感应耦合过来。雷击过电压:由雷击引起的过电压。b)内因过电压:主要来自电力电子装置内部器件的开关过程,包括以下几个部分。换相过电压:由于晶闸管或者与全控型器件反并联的续流二极管在换相结束后不能恢复阻断能力时,因而有较大的反向电流通过,使残存的载流子恢复,而当其恢复了阻断能力时,反向电流急剧减小,这样的电流突变会因线路电感而在晶闸管阴阳极这间或与续流二极管反并联的全控型器件两端产生过电压。关断过电压:全控型器件在较高频率下工作,当器件关断时,因正向电流的迅速降低而线路电感在器件两端感应出的过电压。各电压保护措施及配置位置,各电力电子装置可视具体情况只来用采用其中的几种
21、。其中 RC3 和 RCD 为抑制内因过电压的装置,其功能属于缓冲电路的范畴。在抑制外因过电压的措施中,采用 RS 过电压抑制电路是最为常见的。RC 过电压抑制电路可接于供电变压器的两侧(通常供电电网一侧称网侧,电力电子电路一侧称阀侧)或电力电子电路的直侧流。对于大容量的电力电子装置,可采用图 139 所示的反向阻断式 RC 电路。有关保护2)过电流保护电力电子电路运行不正常或者发生故障时,可能会发生过电流现象。过电流分载和短路两种情况。一般电力电子均同时采用几种过电压保护措施,怪提高保护的可靠性和合理性。在选择各种保护措施时应注意相互协调。通常,电子电路作为第一保护措施,快速熔断器只作为短路
22、时的部分区断的保护,直流快速断路器在电子电力动作之后实现保护,过电流继电器在过载时动作。在选择快熔时应考虑:a)电压等级应根据快熔熔断后实际承受的电压来确定。b)电流容量应按照其在主电路中的接入方式和主电路连接形式确定。快熔一般与电力半导体体器件串联连接,在小容量装置中也可串接于阀侧交流母线或直流母线中。c)快熔的 It 值应小于被保护器件的允许 It 值。d)为保证熔体在正常过载情况下不熔化,应考虑其时间电流特性。快熔对器件的保护方式分为全保护和短保护两种。全保护是指无论过载还是短路均由快熔进行保护,此方式只适用于小功率装置或器件使用裕量较大的场合。短路保护方式是指快熔只要短路电流较大的区域
23、内起保护作用,此方式需与其他过电流保护措施相配合。对一些重要的且易发生短路的晶闸管设备,或者工作频率较高,很难用快熔保护的全控型器件,需要采用电子电路进行过电流保护。除了对电动机起动时的冲击电流等变化较慢的过电流可以用控制系统本身调11节器进行对电流的限制之外,需设置专门的过电流保护电子电路,检测到过流之后直接调节触发,驱动电路,或者关断被保护器件。123 参数设定3.1180调压图 3-1 电源参数设定图 3-2VT1 的触发电平参数设置图 3-3 VT2 的触发电平参数设置13图 3-4 VT3 的触发电平参数设置图 3-5 VT4 的触发电平参数设置图 3-6 输出电流电压波形143.2
24、 移相调压图 3-7VT1 的触发电平参数设置图 3-8 VT2 的触发电平参数设置图 3-9 VT3 的触发电平参数设置15图 3-10 VT4 的触发电平参数设置图 3-11 输出电流电压波形164 参数计算4.1 计算公式(1)整电压平均值为变压器二次绕组两个部分各自交流电压有效值。2U时, ; 时, 。可见 角的移相范围为 。0209.Ud1800dU018(2)向负载输出的直流电流平均值(3)二极管的平均电流晶闸管 VT1 和 VT2 轮流导电,流过晶闸管的电流平均值只有输出直流电流平均值的一半,即 2cos145.021RUIddVT(4)二极管的反向最高电压 2URM(5)为选择
25、晶闸管、变压器容量、导线截面积等定额,需考虑发热问题,为此需计算电流有效值。流过晶闸管的有效值为:变压器二次电流有效值 与输出电流有效值 相等,为2II由以上两式可知 IIVT21不考虑变压器的损耗时,要求变压器的容量为 2IUS4.2 参数选择:2cos19.2cos12)(sin2 Uwtd 2cos.cos2RRId 2sin12)(sin(2122 RUtdRUIVT sin21)(sin(2 tdI17a)电源电压直流 U2=220Vb)电阻=1000c)f=50HZd)输出功率4.3 计算T=1/f=1/50=0.02s=100 )cos1(0495.21ddVTIVURM22当
26、a=30时 ,Ud =184.7v ,Id=0.185A当 a=90时,Ud=99v , Id=0.099A当 a=120时, Ud=49.5v,Id=0.0495A2cos198)10(sin201 dUd )(co98RId 2sin1.02I-2sin1.021IVT185 仿真5.1 触发角为 30 度195.2 触发角为 90 度205.3 触发角为 120 度216 波形分析在接电阻负载时,采用移相的方式来调节逆变电路的输出电压。移相调压实际上就是调节输出电压脉冲的宽度。通过对 4.1.1 触发脉冲的控制得到如图 4.12 和 4.13的波形图,4.12 波形为输出电流电压的波形,
27、由于没有电感负载,在波形图中可看出,一个周期内的两个半个周期的输出电压值大小相等,幅值的正负相反,则输出平均电压为 0。 VT1 电压波形和 VT2 的互补,VT3 电压波形和 VT4 的互补,但 VT3 的基极信号不是比 VT1 落后 180,而是只落后 。即 VT3、VT4 的栅极信号不是分别和VT2、VT1 的栅极信号同相位,而是前移了 90。输出的电压就不再是正负各为 180的的脉冲,而是正负各为 90的脉冲。由于没有电感负载,故电流情形与电压相同。四总结 IGBT 单相电压型全桥无源逆变电路共有 4 个桥臂,可以看成两个半桥电路组合而成,采用移相调压方式后,输出交流电压有效值22心得
28、体会通过单相全波整流电路的设计,使我加深了对整流电路的理解,让我对电力电子该课程产生了浓烈的兴趣。对于一个电路的设计,首先应该对它的理论知识很了解,这样才能设计出性能好的电路。整流电路中,开关器件的选择和触发电路的选择是最关键的,开关器件和触发电路选择的好,对整流电路的性能指标影响很大。在这次课程设计过程中,碰到的难题就是对晶闸管的相关参数的计算,因为在学习中没能很好的系统的总结晶闸管相关知识。在整个课程设计中贯穿的计算过程没能很好的把握。在今后的学习中要认真总结经验,对电力电子课程进行补充。为以后深入的学习自动化专业做铺垫。通过这次课程设计我对于文档的编排格式、原理图波有了一定的了解,这对于
29、以后的毕业设计及工作需要都有颇大的帮助,在完成课程设计的同时我也在复习一遍电力电子技术这门课程,把以前一些没弄懂的问题基本掌握了在做电力电子课程设计的过程中我们更能认真和全面的对所学知识有一个全面和系统更深刻的了解和掌握。在这个过程中我们认真的查阅了大量的资料和工具书增长了我们的知识,开阔了我们的视野,是一种让学生更加接近社会和生活的有效方法。在这次设计中,由于我们知识的欠缺,设计的并不详细,知识的衔接也不理想,错误应该是有的,但我们已经努力了,设计中错误的地方希望老师能谅解,加以指点。23参考文献【1】王兆安、刘进军.电力电子技术西安M.: 机械工业出版社 2009【2】赵良炳.现代电力电子技术基础M. 北京:清华大学出版社,1995【3】陈治明. 电力电子器件基础M. 北京:机械工业出版社,1992【4】黄继昌.电子元器件应用手册M.人民邮电出版社,2004