1、7.7一元一次不等式与一元一次方程、一次函数,初中数学八年级下册 (苏科版),一根长20cm的弹簧,一端固定,另一端挂物体.在弹簧伸长后的长度不超过30cm的限度内,每挂1kg质量的物体,弹簧伸长0.5cm,如果所挂物体的质量是x kg,弹簧的长度是y cm. 问题一:求x与y之间的函数关系式,并画出函数的图像.,关注生活,根据题意,这根弹簧挂x kg质量的物体后,伸长了0.5cm,此时弹簧的长度是(0.5x20)cm,即得x与y之间得函数关系式,问题二:求该弹簧所挂物体得最大质量.,所以该弹簧所挂物体的最大质量是20kg.,因为所挂物体越重,弹簧伸得越长,又因为挂上物体后弹簧得长度不能超过3
2、0cm,所以当y30时,该弹簧所挂物体得质量最大。 解一元一次方程,问题二:求该弹簧所挂物体得最大质量.,讨论,小组交流:问题一:你能不能用一元一次不等式的方法来求该弹簧所挂物体得最大质量?,问题二:通过上述问题请你谈谈一元一次不等式与一元一次方程、一次函数之间存在怎样的关系?,小结:,(1)当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值; (2)当已知一次函数中的一个变量取值的范围时,可以用一元一次不等式(组)确定另一个变量取值的范围.,某人点燃一根长25cm的蜡烛,已知蜡烛每小时缩短5cm,设x h后蜡烛剩下的长度为y cm. (1)求y与x之间的函数关系式. (2
3、)几小时后,蜡烛的长度不足10cm?,例题,例题,解:(1)根据题意,得y=25-5x, 即y与x之间的函数关系为y=25-5x. (2)当y3. 所以3小时后蜡烛的长度不足,你能用其他方法解决这个问题吗?,练习,1. x取什么值时,函数y=-2(x+1)+4的值 是正数?负数?非负数?,2. 声音在空气中的传播速度y (m/s)(简称音速) 与气温x()满足关系式y= x+331.求(1)音速为340m/s时的气温(2)音速超过340m/s时的气温范围,思考,东风商场文具部的某种毛笔每枝售价25元,书法练习本每本售价5元,该商场为促销制定了两种优惠办法. 甲:买一枝毛笔就赠送一本练习本; 乙:按购买金额打九折付款. 某校欲为书法兴趣小组购买这种毛笔10枝,书法练习本x(x10)本. (1)写出每种优惠办法实际付款金额y甲(元),y乙(元)与x(本)之间的函数关系式; (2)购买同样多的书法练习本时,按哪种优惠办法付款更省钱。,课堂小结,1. 在本节课中,不等式、方程相对于函数有什么意义?2. 在一个一次函数构架得问题中,你会用几种方法求最值?,