1、第五章 物质的跨膜运输与信号传递, 物质的跨膜运输 细胞通讯与信号传递,第一节 物质的跨膜运输,被动运输(passive transport)主动运输(active transport)胞吞作用(endocytosis)与胞吐作用(exocytosis),物质的跨膜运输是细胞维持正常生命活动的基础之一。,被动运输(passive transport),特点:运输方向、跨膜动力、能量消耗、膜转运蛋白 类型:简单扩散(simple diffusion)、协助扩散(facilitated diffusion) 膜转运蛋白:载体蛋白(carrier proteins)通透酶(permease)性质;介
2、导被动运输与主动运输。通道蛋白(channel proteins)具有离子选择性,转运速率高. 离子通道是门控的;只介导被动运输类型: 电压门通道(voltage-gated channel)配体门通道(ligand-gated channel)压力激活通道(stress-activated channel),人工膜对各类物质的通透率: 脂溶性越高通透性越大,水溶性越高通透性越小; 非极性分子比极性容易透过,极性不带电荷小分子,如H2O、O2等可以透过人工脂双层,但速度较慢; 小分子比大分子容易透过;分子量略大一点的葡萄糖、蔗糖则很难透过; 人工膜对带电荷的物质,如各类离子是高度不通透的。,二
3、、协助扩散,也称促进扩散(facilitated diffusion)。 特点: 比自由扩散转运速率高; 运输速率同物质浓度成非线性关系; 特异性;饱和性。 载体:离子载体和通道蛋白两种类型。,简单扩散与协助扩散的比较,Three conformation of the acetylcholine receptor,主动运输(active transport),特点:运输方向、能量消耗、膜转运蛋白被动与主动运输的比较 类型:三种基本类型 由ATP直接提供能量的主动运输钠钾泵 (结构与机制)钙泵(Ca2+-ATP酶)质子泵:P-型质子泵、V-型质子泵、H+-ATP酶协同运输(cotranspor
4、t)由Na+-K+泵(或H+-泵)与载体蛋白协同作用,靠间接消耗ATP所 完成的主动运输方式 物质的跨膜转运与膜电位,钠钾泵,构成:由2个大亚基、2个小亚基组成的4聚体,实际上就是Na+-K+ATP酶,分布于动物细胞的质膜。 工作原理: Na+-K+ATP酶通过磷酸化和去磷酸化过程发生构象的变化,导致与Na+、K+的亲和力发生变化。在膜内侧Na+与酶结合,激活ATP酶活性,使ATP分解,酶被磷酸化,构象发生变化,于是与Na+结合的部位转向膜外侧;这种磷酸化的酶对Na+的亲和力低,对K+的亲和力高,因而在膜外侧释放Na+、而与K+结合。K+与磷酸化酶结合后促使酶去磷酸化,酶的构象恢复原状,于是与
5、K+结合的部位转向膜内侧,K+与酶的亲和力降低,使K+在膜内被释放,而又与Na+结合。其总的结果是每一循环消耗一个ATP;转运出三个Na+,转进两个K+。,Na+-K+ATP pump can catalyze the formation of ATP under laboratory condition,钠钾泵对离子的转运循环依赖自磷酸化过程(ATP上的一个磷酸基团转移到钠钾泵的一个天冬氨酸残基上,导致构象变化),所以这类离子泵叫做P-type。 Na+-K+泵的作用: 维持细胞的渗透性,保持细胞的体积; 维持低Na+高K+的细胞内环境; 维持细胞的静息电位。 地高辛、乌本苷等强心剂抑制其活
6、性;Mg2+和少量膜脂有助提高于其活性。,钙离子泵,作用:维持细胞内较低的钙离子浓度(细胞内钙离子浓度10-7M,细胞外10-3M)。 位置:质膜和内质网膜。 类型: P型离子泵,其原理与钠钾泵相似,每分解一个ATP分子,泵出2个Ca2+。位于肌质网上的钙离子泵占肌质网膜蛋白质的90%。 钠钙交换器(Na+-Ca2+ exchanger),属于反向协同运输体系,通过钠钙交换来转运钙离子。,Ca+ ATPase,Maintains low cytosolic Ca+ Present In Plasma and ER membranes,Model for mode of action for C
7、a+ ATPaseConformation change,1、P-type:利用ATP自磷酸化发生构象的改变来转移质子,如植物细胞膜上的H+泵、动物胃表皮细胞的H+-K+泵(分泌胃酸)。 2、V-type:存在于各类小泡(vacuole) 膜上,由许多亚基构成,水解ATP产生能量,但不发生自磷酸化,位于溶酶体膜、内体、植物液泡膜上。 3、F-type:是由许多亚基构成的管状结构,利用质子动力势合成ATP,也叫ATP合酶,位于细菌质膜,线粒体内膜和叶绿体的类囊体膜上。,质子泵,Four types of ATP-powered pumps,协同运输cotransport,是一类靠间接提供能量完成
8、的主动运输方式。 物质跨膜运动所需要的能量来自膜两侧离子的电化学浓度梯度,而维持这种电化学势的是钠钾泵或质子泵。 动物细胞中常常利用膜两侧Na+浓度梯度来驱动。 植物细胞和细菌常利用H+浓度梯度来驱动。 根据物质运输方向与离子沿浓度梯度的转移方向,协同运输又可分为:同向协同(symport)与反向协同(antiport)。,1、同向协同(symport) 物质运输方向与离子转移方向相同。如小肠细胞对葡萄糖的吸收伴随着Na+的进入。在某些细菌中,乳糖的吸收伴随着H+的进入。 2、反向协同(antiport) 物质跨膜运动的方向与离子转移的方向相反,如动物细胞常通过Na+/H+反向协同运输的方式来
9、转运H+,以调节细胞内的PH值。还有一种机制是Na+驱动的Cl-HCO3-交换,即Na+与HCO3-的进入伴随着Cl-和H+的外流,如存在于红细胞膜上的带3蛋白。,Glucose is absorbed by symport,在动物、植物细胞由载体蛋白 介导的协同运输异同点的比较,膜泡运输的基本概念,真核细胞通过内吞作用(endocytosis)和外排作用(exocytosis)完成大分子与颗粒性物质的跨膜运输。在转运过程中,质膜内陷,形成包围细胞外物质的囊泡,因此又称膜泡运输。细胞的内吞和外排活动总称为吞排作用(cytosis)。,胞吞作用(endocytosis) 与胞吐作用(exocyt
10、osis),作用:完成大分子与颗粒性物质的跨膜运输,又称膜泡运输或批量运输(bulk transport)。属于主动运输。胞吞作用胞吐作用,胞吞作用,胞饮作用(pinocytosis)与吞噬作用(phagocytosis)。胞饮作用与吞噬作用主要有三点区别,受体介导的内吞作用及包被的组装 胞内体(endosome)及其分选作用,细胞内吞较大的固体颗粒物质,如细菌、细胞碎片等,称为吞噬作用。,吞噬作用,细胞吞入液体或极小的颗粒物质。,胞饮作用,胞吐作用, 组成型的外排途径(constitutive exocytosis pathway)所有真核细胞连续分泌过程用于质膜更新(膜脂、膜蛋白、胞外基质
11、组分、营养或信号分子)default pathway:除某些有特殊标志的駐留蛋白和调节型分泌泡外, 其余蛋白的转运途径:粗面内质网高尔基体分泌泡细胞表面 调节型外排途径(regulated exocytosis pathway)特化的分泌细胞储存刺激释放产生的分泌物(如激素、粘液或消化酶)具有共同的分选机制,分选信号存在于蛋白本身,分选主要由高尔基体TGN上的受体类蛋白来决定 膜流:动态过程对质膜更新和维持细胞的生存与生长是必要的 囊泡与靶膜的识别与融合,第二节 细胞通讯与信号传递,细胞通讯与细胞识别细胞的信号分子与受体通过细胞内受体介导的信号传递通过细胞表面受体介导的信号跨膜传递由细胞表面整
12、合蛋白介导的信号传递细胞信号传递的基本特征与蛋白激酶的网络整合信息,细胞不是孤立的生活,它与周围环境与细胞除了物质、能量的交换外,还有对信号的接收和处理。细胞的基因表达及增殖、分化、生长、衰老、死亡、代谢、神经传导、免疫等基本生命活动都与细胞信号转导有关,对细胞信号转导的研究,有利于了解基因调控网络,继而揭示基因活动与细胞行为之间的关系。细胞信号转导是当前分子生物学中三大研究内容之一。,一 细胞通讯与细胞识别,细胞通讯(cell communication)细胞识别(cell recognition),1 细胞通讯(cell communication),一个细胞发出的信息通过介质传递到另一个
13、细胞产生相应的反应。细胞间的通讯对于多细胞生物体的发生和组织的构建,协调细胞的功能,控制细胞的生长、分裂、分化和凋亡是必须的。细胞通讯方式:分泌化学信号进行通讯 内分泌(endocrine)旁分泌(paracrine)自分泌(autocrine)化学突触(chemical synapse)接触性依赖的通讯细胞间直接接触,信号分子与受体都是细胞的跨膜蛋白间隙连接实现代谢偶联或电偶联,2 细胞识别(cell recognition),概念:细胞通过其表面的受体与胞外信号物质分子(配体)选择性地相互作用,进而导致胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。 信号通路(signali
14、ng pathway)细胞识别是通过各种不同的信号通路实现的。细胞接受外界信号,通过一整套特定的机制,将胞外信号转导为胞内信号,最终调节特定基因的表达,引起细胞的应答反应,这种反应系列称之为细胞信号通路。,3 细胞的信号分子与受体,信号分子(signal molecule)亲脂性信号分子亲水性信号分子气体性信号分子(NO) 受体(receptor)多为糖蛋白 第二信使(second messenger) 分子开关(molecular switches),受体的定义: 是细胞表面或亚细胞组分中的一种分子,可以识别并特异地与有生物活性的化学信号物质(配体)结合,从而激活或启动一系列生物化学反应,最
15、后导致该信号物质特定的生物效应。 两个功能:1、识别特异的配体;2、把识别和接受的信号准确无误的放大并传递到细胞内部,产生特定的细胞反应。,细胞内受体: 为胞外亲脂性信号分子所激活激素激活的基因调控蛋白(胞内受体超家族) 细胞表面受体: 为胞外亲水性信号分子所激活 细胞表面受体分属三大家族: 离子通道偶联的受体(ion-channel-linked receptor) G-蛋白偶联的受体(G-protein-linked receptor) 酶偶连的受体(enzyme-linked receptor),受体的功能:介导物质跨膜运输(受体介导的内吞作用)信号转导:受体的激活(activation
16、) (级联反应);受体失敏(desensitization) 关闭反应、减量调节(down-regulation) 降低反应。,结合特点,1、同一配体可能有两种或两种以上的不同受体 2、配体与受体结合的饱和性 3 受体数目恒定;但是相对的受体与配体(信号分子)间作用的主要特征: 特异性;饱和性;高度的亲和力。,二 通过细胞内受体介导的信号传递, 甾类激素介导的信号通路 两步反应阶段: 初级反应阶段:直接活化少数特殊基因转录的,发生迅速; 次级反应:初级反应产物再活化其它基因产生延迟的放大作用。一氧化氮介导的信号通路,三 通过细胞表面受体介导的信号跨膜传递,离子通道偶联的受体介导的信号跨膜传递
17、G-蛋白偶联的受体介导的信号跨膜传递与酶偶联的受体,1 离子通道偶联的受体介导的信号跨膜传递,信号途径 特点:受体/离子通道复合体,四次/六次跨膜蛋白跨膜信号转导无需中间步骤主要存在于神经细胞或其他可兴奋细胞间的突触信号传递有选择性:配体的特异性选择和运输离子的选择性,2 G-蛋白偶联的受体介导的信号跨膜传递, cAMP信号通路 磷脂酰肌醇信号通路,三聚体GTP结合调节蛋白(trimeric GTP-binding regulatory protein)简称G蛋白。由、三个亚基组成, 和亚基通过共价结合的脂肪酸链尾结合在膜上。G蛋白在信号转导过程中起着分子开关的作用,当亚基与GDP结合时处于关
18、闭状态,与GTP结合时处于开启状态。,G蛋白耦联型受体为7次跨膜蛋白,受体胞外结构域识别胞外信号分子并与之结合,胞内结构域与G蛋白耦联。通过与G蛋白耦联,调节相关酶活性,在细胞内产生第二信使,从而将胞外信号跨膜传递到胞内。,cAMP信号通路,概念:细胞外信号和相应的受体结合,导致胞内第二信使cAMP的水平变化而引起细胞反应的信号通路。 组分及分析:受体;调节蛋白;腺苷酸环化酶(Adenylyl cyclase); 蛋白激酶A(Protein Kinase A,PKA);环腺苷酸磷酸二酯酶(cAMP phosphodiesterase)。 反应链:激素G-蛋白偶联受体G-蛋白腺苷酸环化酶cAMP
19、cAMP依赖的蛋白激酶A基因调控蛋白基因转录,G蛋白在结构上没有跨膜蛋白的特点,它们能够固定于细胞膜内侧,主要是通过对起亚基上氨基酸残基的脂化修饰作用,把G蛋白锚定在细胞膜上。能够激活腺苷酸环化酶的G蛋白称为Gs,对该酶有抑制作用的称为Gi。当Gs处于非活化态时,为异三聚体,亚基上结合着GDP,此时受体及环化酶亦无活性;激素配体与受体结合后导致受体构象改变,其上与Gs结合位点暴露,受体与Gs在膜上扩散导致两者结合,形成受体-Gs复合体后,Gs亚基构象改变,排斥GDP,结合了GTP而活化,亚基从而与亚基解离,同时暴露出与环化酶结合位点;亚基与环化酶结合而使后者活化,利用ATP生成cAMP;一段时
20、间后,亚基上的GTP酶活性使结合的GTP水解为GDP,亚基恢复最初构象,从而与环化酶分离,环化酶活化终止,亚基从新与亚基复合体结合。重复此过程。,在上述模型中,Gs穿梭于膜上两个蛋白质-受体与腺苷酸环化酶之间,起了一个信号传递者的作用,而Gs上结合GTP-GDP循环在激活-灭活环化酶中起了关键作用。,激素配体与G蛋白偶联受体结合后导致受体构象改变,其上与Gs结合位点暴露,受体与Gs在膜上扩散导致两者结合,形成受体-Gs复合体后,Gs亚基构象改变,排斥GDP,结合了GTP而活化,亚基从而与亚基解离,同时暴露出与环化酶结合位点;亚基与环化酶结合而使后者活化,利用ATP生成cAMP。cAMP产生后,
21、与依赖cAMP的蛋白激酶(PKA)的调节亚基结合,并使PKA的调节亚基和催化亚基分离,活化催化亚基,催化亚基将代谢途径中的一些靶蛋白中的丝氨酸或苏氨酸残基磷酸化,将其激活或钝化。这些被磷酸化共价修饰的靶蛋白往往是一些关键调节酶或重要功能蛋白,因而可以介导胞外信号,调节细胞反应。,磷脂酰肌醇信号通路, “双信使系统”反应链:胞外信号分子G-蛋白偶联受体G-蛋白IP3胞内Ca2+浓度升高Ca2+结合蛋白(CaM)细胞反应磷脂酶C(PLC)DG激活PKC蛋白磷酸化或促Na+/H+交换使胞内pH,受体酪氨酸激酶及RTK-Ras蛋白信号通路细胞表面其它与酶偶联的受体,3 酶偶联的受体介导的信号跨膜传递,
22、类型:受体丝氨酸/苏氨酸激酶受体酪氨酸磷酸酯酶 受体鸟苷酸环化酶(ANPs-signals)酪氨酸蛋白激酶联系的受体 特点:通常为单次跨膜蛋白;接受配体后发生二聚化而激活,起动其下游信号转导。,受体酪氨酸激酶及RTK-Ras蛋白信号通路,受体酪氨酸激酶(receptor tyrosine kinases,RTKs)包括6个亚族 信号转导:配体受体受体二聚化受体的自磷酸化 激活RTK胞内信号蛋白启动信号传导 RTK- Ras信号通路:配体RTK adaptor GRFRasRaf(MAPKKK)MAPKKMAPK进入细胞核其它激酶或基因调控蛋白(转录因子)的磷酸化修钸。,细胞表面其它与酶偶联的受
23、体,受体丝氨酸/苏氨酸激酶 受体酪氨酸磷酸酯酶 受体鸟苷酸环化酶(ANPs-signals) 酪氨酸蛋白激酶联系的受体两大家族: 一是与Src蛋白家族相联系的受体; 二是与Janus激酶家族联系的受体。 信号转导子和转录激活子(signal transducer and actvator of transcription,STAT)与JAK-STAT途径。,四 由细胞表面整合蛋白介导的信号传递,整合蛋白与粘着斑 导致粘着斑装配的信号通路有两条 粘着斑的功能:一是机械结构功能;二是信号传递功能 通过粘着斑由整合蛋白介导的信号传递通路: 由细胞表面到细胞核的信号通路 由细胞表面到细胞质核糖体的信号通路,五 细胞信号传递的基本特征 与蛋白激酶的网络整合信息,细胞信号传递的基本特征: 具有收敛(convergence)或发散(divergence)的特点 细胞的信号传导既具有专一性又有作用机制的相似性 信号的放大作用和信号所启动的作用的终止并存 细胞以不同的方式产生对信号的适应(失敏与减量调节)蛋白激酶的网络整合信息与信号网络系统中的cross talk,本章内容回顾,重点:物质跨膜运输的类型钠钾泵的结构和作用机理受体介导的胞吞作用受体和信号分子cAMP信号通路和磷脂酰肌醇信号通路,谢谢,