1、1专业英语 翻译A 高分子化学和高分子物理 UNIT 1 What are Polymer? 第一单元 什么是高聚物? What are polymers? For one thing, they are complex and giant molecules and are different from low molecular weight compounds like, say, common salt. To contrast the difference, the molecular weight of common salt is only 58.5, while that of
2、 a polymer can be as high as several hundred thousand, even more than thousand thousands. These big molecules or macro-molecules are made up of much smaller molecules, can be of one or more chemical compounds. To illustrate, imagine that a set of rings has the same size and is made of the same mater
3、ial. When these things are interlinked, the chain formed can be considered as representing a polymer from molecules of the same compound. Alternatively, individual rings could be of different sizes and materials, and interlinked to represent a polymer from molecules of different compounds. 什么是高聚物?首先
4、,他们是合成物和大分子而且不同于低 分子化合物,譬如说普通的盐。与低分子化合物不同的是,普通盐的分子量仅仅是 58.5,而高聚物的分子量高于 105,甚至大于 106。 这些大分子或“高分子” 由许多小分子组成。 小分子相互结合形成 大分子,大分子能够是一种或多种化合物。举例说明,想象一组大 小相同并由相同的材料制成的环。当这些环相互连接起来,可以把 形成的链看成是具有同种分子量化合物组成的高聚物。另一方面, 独特的环可以大小不同、材料不同,相连接后形成具有不同分子量 化合物组成的聚合物。 This interlinking of many units has given the polyme
5、r its name, poly meaning many and mer meaning part (in Greek). As an example, a gaseous compound called butadiene, with a molecular weight of 54, combines nearly 4000 times and gives a polymer known as polybutadiene (a synthetic rubber) with about 200 000molecular weight. The low molecular weight co
6、mpounds from which the polymers form are known as monomers. The picture is simply as follows: 许多单元相连接给予了聚合物一个名称, poly 意味着 “多、 聚、 重复” ,mer 意味着“ 链节、基体” (希腊语中) 。例如:称为丁二烯 的气态化合物,分子量为 54,化合将近 4000 次,得到分子量大约 为 200000 被称作聚丁二烯(合成橡胶)的高聚物。形成高聚物的低分子化合物称为单体。下面简单地描述一下形成过程:butadiene + butadiene + + butadiene-poly
7、butadiene (4 000 time) 丁二烯 丁二烯丁二烯聚丁二烯 (4000 次)One can thus see how a substance (monomer) with as small a molecule weight as 54 grow to become a giant molecule (polymer) of (544 000)200 000 molecular weight. It is essentially the giantness of the size of the polymer molecule that makes its behavior d
8、ifferent from that of a commonly known chemical compound such as benzene. Solid benzene, for instance, melts to become liquid benzene at 5.5 and , on further heating, boils into gaseous benzene. As against this well-defined behavior of a simple chemical compound, a polymer like polyethylene does not
9、 melt sharply at one particular temperature into clean liquid. Instead, it becomes increasingly softer and, ultimately, turns into a very viscous, tacky molten mass. Further heating of this hot, viscous, molten polymer does convert it into various gases but it is no longer polyethylene. (Fig. 1.1) .
10、 因而能够看到分子量仅为 54 的小分子物质(单体)如何逐渐 形成分子量为 200000 的大分子(高聚物) 。实质上,正是由于聚合 物的巨大的分子尺寸才使其性能不同于象苯这样的一般化合物。例 如,固态苯,在 5.5熔融成液态苯,进一步加热,煮沸成气态苯。 与这类简单化合物明确的行为相比,像聚乙烯这样2的聚合物不能在 某一特定的温度快速地熔融成纯净的液体。 而聚合物变得越来越软, 最终,变成十分粘稠的聚合物熔融体。将这种热而粘稠的聚合物熔 融体进一步加热,不会转变成各种气体,但它不再是聚乙烯(如图 1.1) 。 固态苯 液态苯气态苯 加热, 5.5 加热, 80固体聚乙烯熔化的聚乙烯各种分解产
11、物-但不是聚乙 烯 加热 加热图 1.1 低分子量化合物(苯)和聚合物(聚乙烯)受热后的不同行 为Another striking difference with respect to the behaviorof a polymer and that of a low molecular weight compound concerns the dissolution process. Let us take, for example, sodium chloride and add it slowly to s fixed quantity of water. The salt, whic
12、h represents a low molecular weight compound, dissolves in water up to s point (called saturation point) but, thereafter, any further quantity added does not go into solution but settles at the bottom and just remains there as solid. The viscosity of the saturated salt solution is not very much diff
13、erent from that of water. But if we take a polymer instead, say, polyvinyl alcohol, and add it to a fixed quantity of water, the polymer does not go into solution immediately. The globules of polyvinyl alcohol first absorb water, swell and get distorted in shape and after a long time go into solutio
14、n. Also, we can add a very large quantity of the polymer to the same quantity of water without the saturation point ever being reached. As more and more quantity of polymer is added to water, the time taken for the dissolution of the polymer obviously increases and the mix ultimately assumes a soft,
15、 dough-like consistency. Another peculiarity is that, in water, polyvinyl alcohol never retains its original powderynature as the excess sodium chloride does in a saturated salt solution. In conclusion, we can say that (1) the long time taken by polyvinyl alcohol for dissolution, (2) the absence of
16、a saturation point, and (3) the increase in the viscosity are all characteristics of a typical polymer being dissolved in a solvent and these characteristics are attributed mainly tothe large molecular size of the polymer. The behavior of a low molecular weight compound and that of a polymer on diss
17、olution are illustrated in Fig.1.2. 发现另一种不同的聚合物行为和低分子量化合物行为是关于溶 解过程。例如,让我们研究一下,将氯化钠慢慢地添加到固定量的 水中。盐,代表一种低分子量化合物,在水中达到点(叫饱和点) 溶解,但,此后,进一步添加盐不进入溶液中却沉到底部而保持原 有的固体状态。饱和盐溶液的粘度与水的粘度不是十分不同,但是, 如果我们用聚合物替代,譬如说,将聚乙烯醇添加到固定量的水中, 聚合物不是马上进入到溶液中。聚乙烯醇颗粒首先吸水溶胀,发生 形变,经过很长的时间以后进入到溶液中。同样地,我们可以将大 量的聚合物加入到同样量的水中,不存在饱和点。将越
18、来越多的聚 合物加入水中,认为聚合物溶解的时间明显地增加,最终呈现柔软 像面团一样粘稠的混合物。另一个特点是,在水中聚乙烯醇不会像过量的氯化钠在饱和盐溶液中那样能保持其初始的粉末状态。 总之, 我们可以讲(1)聚乙烯醇的溶解需要很长时间, (2)不存在饱和 点, (3)粘度的增加是典型聚合物溶于溶液中的特性,这些特性主 要归因于聚合物大分子的尺寸。如图 1.2 说明了低分子量化合物和 聚合物的溶解行为。 氯化钠晶体加入到水中晶体进入到溶液中.溶液的粘度不是 十分不同于 充分搅拌 水的粘度 形成饱和溶液.剩余的晶体维持不溶解状态. 加入更多的晶体并搅拌 氯化钠的溶解 聚乙烯醇碎片加入到水中 碎片
19、开始溶胀碎片慢慢地 进入到溶液中 允许维持现状 搅拌 形成粘稠的聚合物溶液 .溶液粘度十分高于水的粘度 继续搅拌 聚合物的溶解 图 1.2 低分子量化合物(氯化钠)和聚合物(聚乙烯醇)不同的溶 解行为充分Gowariker VR, Viswanathan N V, Sreedhar J. Polymer Science. New York: John Wiley hence the polymerization reaction will continue in a stepwise fashion, with each esterification of monomers. Thus,mol
20、ecular weight increases slowly even at high levels of monomer conversion, and it will continue to increase until the viscosity build-up makes it mechanically too difficult to remove water of esterification or for reactive end groups to find each other. 聚酯化,是否在二元酸和二元醇或羟基酸分子间进行,是逐步 聚合反应过程的一个例子。酯化反应出现在
21、单体本体中两个单体分 子相碰撞的位置,且酯一旦形成,依靠酯上仍有活性的羟基或羧基 还可以进一步进行反应。酯化的结果是单体分子很快地被消耗掉, 而分子量却没有多少增加。图 3.1 说明了这个现象。例如,假定图 3.1 中的每一个方格代表一个羟基酸分子。 (b)中的二聚体分子,消耗二分之一的单体分子聚合物种类的聚合度(DP)是 2。 (c)中 当三聚体和更多的二聚体形成,大于 80%的单体分子已反应,但 DP 仅仅还是 2.5。 (d)中当所有的单体反应完,DP 是 4。但形成 的每一种聚合物分子还有反应活性的端基;因此,聚合反应将以逐 步的方式继续进行,其每一步酯化反应的反应速率和反应机理均与
22、初始单体的酯化作用相同。因此,分子量缓慢增加直至高水平的单 体转化率,而且分子量将继续增加直到粘度的增加使其难以除去酯 化反应的水或难以找到相互反应的端基。 It can also be shown that in the A-A+B-B type of polymerization, an exact stoichiometric balance is necessary to achieve high molecular weights. If some monofunctional impurity is present, its reaction will limit the mole
23、cular weight by rendering a chain end inactive. Similarly, high-purity monomers are necessary in the A-B type ofpolycondensation and it follows that high-yield reactions are the only practical ones for polymer formation, since side reactions will upset the stoichiometric balance. 在 A-A+B-B 的聚合反应中也可以
24、看到, 精确的当量平衡是获得 高分子量所必需的。假如存在一些但官能团杂质,由于链的端基失 活,反应将使分子量减少。同样,在 A-B 类的缩聚反应中高纯度的单体是必要的,而且可以归结高收率的反应仅是形成聚合物的实际 反应,因为副反应会破坏当量平衡。 -Stevens M P. Polymer Chemistry. London:Addison-Wesley Publishing Company, 1975. 13 UNIT 4 Ionic Polymerization第四单元 离子聚合反应 Ionic polymerization, similar to radial polymerizatio
25、n, also has the mechanism of a chain reaction. The kinetics of ionic polymerization are, however, considerably different from that of radical polymerization. 离子聚合反应,与自由基聚合反应相似,也有链反应的机理。 但是,离子聚合的动力学明显地不同于自由基聚合反应。 (1) The initiation reaction of ionic polymerization needs only a small activation energy
26、. Therefore, the rate of polymerization depends only slightly on the temperature. Ionic polymerizations occur in many cases with explosive violence even at temperature. below 50(for example, the anionic polymerization or of styrene cationic at 70 in of6tetrahydrofuran,thepolymerizationisobutylene at
27、 100 in liquid ethylene ).(1)离子聚合的引发反应仅需要很小的活化能。因此,聚合反应 的速率仅对温度有较少的依赖性。在许多情况下离子聚合猛烈地发 生甚至低于 50(例如,苯乙烯的阴离子聚合反应在-70在四氢 呋喃中,或异丁烯的阳离子聚合在-100 在液态乙烯中) 。 (2) With ionic polymerization there is no compulsory chain termination through recombination, because the growing chains can not react with each other. C
28、hain termination takes place only through impurities, or through the addition of certain compounds such as water, alcohols, acids, amines, or oxygen, and in general through compounds which can react with polymerization ions under the formation of neutral compounds or inactive ionic species. If the i
29、nitiators are only partly dissociated, the initiation reaction is an equilibrium reaction, where reaction in one direction gives rise to chain initiation and in the other direction to chain termination. (2) 对于离子聚合来说, 不存在通过再结合反应而进行的强迫 链终止,因为生长链之间不能发生链终止。链终止反应仅仅通过杂 质而发生,或者说通过和某些像水、醇、酸、胺或氧这样的化合物 进行加成而发
30、生,且一般来说(链终止反应)可通过这样的化合物来进行,这种化合物在中性聚合物或没有聚合活性的离子型聚合物 生成的过程中可以和活性聚合物离子进行反应。如果引发剂仅仅部 分地离解,引发反应即为一个平衡反应,在出现平衡反应的场合, 在一个方向上进行链引发反应,而在另一个方向上则发生链终止反 应。 In general ionic polymerization polymerization can be initiated through acidic or basic compounds. For cationic polymerization, complexes of BF3, AlCl3, T
31、iCl4, and SnCl4 with water, or alcohols, or tertiary oxonium salts have shown themselves to be particularly active. The positive ions are the ones that cause chain initiation. For example: 通常离子聚合反应能通过酸性或碱性化合物被引发。对于阳离 子聚合反应来说,BF3,AlCl3,TiCl4 和 SnCl4 与水、或乙醇,或叔烊盐 的络合物提供了部分活性。 正离子是产生链引发的化合物。 例如: (反 应略)
32、三乙基硼氟酸烊 However, also with HCl, H2SO4, and KHSO4, one can initiate cationic polymerization. Initiators for anionic polymerization are alkali metals and their organic compounds, such as phenyllithium, butyllithium,19phenyl sodium andtriphenylmethyl potassium, which are more or less strongly dissociat
33、ed in different solvents. To this group belong also the so called Alfin catalysts, which are a mixture of sodium isopropylate, allyl sodium, and sodium chloride. 然而,BF3 也可以与 HCl、H2SO4 和 KHSO4 引发阳离子聚合反 应。阴离子聚合反应的引发剂是碱金属和它们的有机金属化合物, 例如苯基锂、丁基锂和三苯甲基锂,它们在不同的溶剂中或多或少 地强烈分解。所谓的 Alfin 催化剂就是属于这一类,这类催化剂是 异丙醇钠、
34、烯丙基钠和氯化钠的混合物。With BF3 (and isobutylene as the monomer), it was demonstrated that the polymerization is possible only in the presence of traces of traces of water or alcohol. If one eliminates the trace of water, BF3 alone does not give rise to polymerization. Water or alcohols are necessary in order
35、 to allow the formation of the BF3-complex and the initiator cation according to the above reactions. However, one should not describe the water or the alcohol as a “cocatalyst”. BF3 为引发剂(异丁烯为单体) ,证明仅在痕量水或乙醇的存在下聚合反应是可以进行的。如果消除痕量的水,单纯的 BF3 不会引 发聚合反应。按照上述反应为了能形成 BF3-络合物和引发剂离子水 或乙醇是必需的。但是不应将水或乙醇描述成“助催化
36、剂” 。 Just as by radical polymerization, one can also prepare copolymers by ionic 7polymerization, for example, anionic copolymers of styrene and butadiene, or cationic copolymers of isobutylene and styrene, or isobutylene and viny ethers, etc. As has been described in detailwith radicalpolymerizatio
37、n, one can characterize each monomer pair by so-called reactivity ratios r1 and r2. The actual values of these two parameters are, however, different from those used for radical copolymerization. 正与自由基聚合反应一样,通过离子聚合反应也能制备共聚物, 例如,苯乙烯-丁二烯阴离子共聚物,或异丁烯- 苯乙烯阳离子共聚 物,或异丁烯- 乙烯基醚共聚物,等等。正如对自由基型聚合已经详 细描述过那样,人们可以
38、用所谓的竞聚率 r1 和 r2 来表征每单体对。 然而,这两个参数的实际意义不同于那些用于自由基共聚合反应的 参数。 -Vollmert B. Polymer Chemistry. Berlin: Sping-Verlag, 1973.163PART B 聚合反应工程 UNIT 11 Reactor types 第十一单元 反应器类型 Reactors may be categorized in a variety of ways, each appropriate to a particular perspective. For example, Henglein (1969) choose
39、s a breakdown based on the source of energy used to initiate the reaction (i.e., thermal,electrochemical, photochemical, nuclear). More common breakdowns are according to the types of vessels and flows that exist. 反应器可以用许多方法分类,各自适用于特定的目的。例如, Henglein(1969)基于用于产生反应的能量来源,即,热量,电 化学,光化学,原子核,选择了一种细目分类。更多
40、普通的细目分 类是按照所存在的容器和流量的类型。 1. Batch Reactors 1. 间歇反应器 The batch reactor (BR) is the almost universal choice in the chemists laboratory where most chemical processes originate. The reason is the simplicity and versatility of thebatch reactor, whether it be a test tube, a three-neck flask, an autoclave,
41、 or a cell in a spectroscopic instrument. Regardless of the rate of the reaction, these are clearly low production rate devices. As scale up is desired, the most straightforward approach is to move to a larger batch reactor such as a large vat or tank. 间歇反应器在化学实验室几乎是一般的选择,大多数的化学过 程在那里产生。间歇反应器的原理具简单性
42、和通用性,不管它是一 支试管,一个三颈瓶,一个高压釜,还是一个光谱仪器的比色皿。 不管反应比例,很清楚这些是低产率设备。当要求放大反应器时, 大多直截了当的途径是移至一个较大的间歇反应器如一个较大的大 桶或罐。 Commercial batch reactors can be huge, 100 000 gal or more. The cycle time, often a day or more, typically becomes longer as reactor volume increases in order to achieve a substantial production
43、 rate with an inherently slow reaction. Fabrication, shipping, or other factors place a limit the size of a batch reactor. For example, transportation capacity can limit the size of a batch reactor for which shop, as opposed to on-site, fabrication of the heat exchange surface is required.This limit
44、s the production rates for which batch reactors may be economically utilized. Also, batch reactors must be filled, emptied, and cleaned. For fast reactions these unproductive operations consume far more time than the reaction itself and continuous processes can become more attractive. 商业化的间歇反应器是庞大的,
45、10 万加仑或更大。对于慢化学 反应,为提高生产率必须增加反应器体积,而这往往导致反应器的 循环周期变长,常常以天计算。制造、运输以及其他因素限制了反 应器的规模,如热传递能力会限制间歇反应器的尺寸,热交换器必 须在制造厂而不是在现场加工。这限制了产率由于这间歇反应器可 以被经济地利用。间歇反应器也必须装料、卸料和清洗。为了加快 反应这些非生产性的操作消耗了多于反应本身的时间,连续化过程 可能更有吸引力。 2. Semibatch Reactors (SBR) 2.半间歇反应器 Some reactions may yield a product in a different phase fr
46、om the reaction mixture. Examples would be liberation of a gas from a liquid-phase reaction or the formation of a precipitate in a fluid-phase reaction. To drive the reaction to completion, it may be desirable to continuously separate theraw product phase. A semibatch operation may result as well fr
47、om differing modes of feeding the 8individual reactants. For reasons we will discuss later, it may be desirable to charge one reactant to the reactor at the outset and bleed a second reactant in continuously over time. Such reactors have both a batch and a flow character and, like batch reactors, ar
48、e useful for slow reactions and low production rates. 一些反应器可以从反应混合物的不同相态中生产出某种产品。 例如液相反应中气体的释放,或流动相反应中沉淀的生成。为了驱 使反应完全,希望继续分离粗产物相。个别反应物的不同加入方式 也导致半连续操作。原因我们以后讨论,可希望一开始加入一种反 应物以后连续加入第二种反应物。这类反应器同时具有一个间歇和 一个流动的特征,像间歇反应器,适用于慢反应和低产率。 3. Continuous Stirred Tank Reactors (CSTR) 3. 连续流动搅拌反应器 It is a small s
49、tep from the batch reactor to the CSTR. The same stirred vessel may be used with only the addition of piping and storage tanks to provide for the continuous in-and outflow. Faster reactions can be accommodated and larger production rates can be achieved because of theuninterrupted operation. CSTRs are most often used for liquid-phase reactions, such as nitration and hydrolysis, and multiphase reactions involving liquid with gases and/or solids. Examples would be chlorination and hydrogenation. 从间歇反应器到连续流动搅拌反应器是小小的一步。同样的