1、(B 卷)第 1 页(共 4 页)班级 学号 姓名 密 封 线 内 不 得 答 题赣 南 师 范 学 院 科 技 学 院20122013 学年第 1 学期期末考试试卷(B 卷) (闭卷)年级 2010 专业 数学与应用数学(本)课程名称 数学史 题号 一 二 三 四 五 总分得分阅卷人注意事项:1、教师出题时请勿超出边界虚线;2、学 生 答 题 前 将 密 封 线 外 的 内 容 填 写 清 楚 ,答 题 不 得 超 出 密 封 线 ;3、答 题 请 用 蓝 、黑 钢 笔 或 圆 珠 笔 。一、单项选择题 (在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。每小题
2、 3 分,计 30 分)1、最早采用位值制记数的国家或民族是( A )。A.美索不达米亚 B.埃及 C.阿拉伯 D.印度 2、古希腊数学家( C )创立了相当完美的圆锥曲线理论,其传世之作圆锥 曲线就是这方面的系统总结。A. 阿基米德 B. 欧多克索斯 C. 阿波罗尼奥斯 D. 欧几里得3、九章算术的“少广”章主要讨论( D )。A.比例术 B.面积术 C.体积术 D.开方术4、中国关于勾股定理的证明最早是由三国时期的数学家( A )给出的。A. 赵爽 B. 刘徽 C. 祖冲之 D. 祖暅5、对于透视法所产生的问题从数学上直接给予解答的第一个人是( D ) 。A.达 芬奇 B.笛卡儿 C.帕斯
3、卡 D.德沙格6、元代数学家( C )推广了“天元术” ,提出用“四元术”来解四元方程。 A. 贾宪 B. 秦九韶 C. 朱世杰 D. 沈括7、牛顿最早公开其微积分学说的名著是( D )A.曲线求积术 B.流数术 C.现代微积分学 D.自然哲学的数学原理 8、对数发明的功绩应该归于苏格兰贵族 ( A )。 1614 年他在题为奇妙的对数定理说明书中阐述了他的对数方法。 A. 纳皮尔 B.笛卡儿 C. 费马 D. 韦达9、( D )起源于对欧几里得的几何原本第五公设的研究。A. 解析几何 B. 射影几何 C. 微分几何 D. 非欧几何10、第一篇公开发表的“ 非欧几何 ”文献论几何原理 ,其作者
4、是( D )A. 黎曼 B. 波约 C. 高斯 D. 罗巴切夫斯基二、填空题(每小题 2 分,计 20 分)1、刘徽“割圆术”的要旨是用圆内接正多边形去逐步逼近圆。他指出:“割之弥细,所失弥少。 割之又割 , 以至不可割 ,则与圆合体而无所失矣” 。2、将贾宪“增乘开方法”推广到高次方程一般情况的是南宋时期的数学家 秦九韶 。3、1984 年出土发现的湖北江陵张家山汉初古墓竹简 算数书 ,有些内容与九章算术类似。4、保存至今有关古埃及数学的纸草书主要有两种:一种是陈列于英国伦敦大英博物馆的 莱因德 纸草书;另一种是收藏于俄国的 莫斯科 纸草书。5、现在所知希腊最早的数学家是 泰勒斯 。他将演绎
5、推理引入了数学,奠定了演绎数学的基础,这使他获得了第一位数学家和论证几何学鼻祖的美称。6、历史上第一篇公开发表的微积分论文新方法 ,作者是_莱布尼茨(B 卷)第 2 页(共 4 页)班级 学号 姓名 密 封 线 内 不 得 答 题_,他是_德_国数学家。7、数学史上第一个对不定方程问题作广泛、深入研究的数学家是古希腊的 丢番图 。8、微分几何诞生于_18_世纪,对微分几何理论的建立和发展作出了重要贡献的数学家是克莱洛、欧拉以及_蒙日_。9、微积分的真正创立应该归功于英国的 牛顿 和德国的 莱布尼茨 两位数学家。10、法国数学家 伽罗瓦 在 18291831 年间完成的几篇论文中,建立了判别方程
6、根式可解的充分必要条件,从而宣告了方程根式可解这一经历了三百年的难题的彻底解决。三、解释题(每小题 5 分,计 10 分)1、三大尺规作图问题 答:由古希腊的巧辩学派指出( ) ,就是指:只允许用圆规和直尺作一个正1方形,使其与给定的圆面积相等( ) ;给定立方体的一边,求作另一立2方体之边,使后者体积两倍于前者体积( ) ;三等分任一已知角( ) 。 2 2、悬链线问题答:求一根柔软但不能伸长的绳子自由悬挂于两定点而形成的曲线。( )这问题于 1690 年由雅各布伯努利提出,第二年莱布尼茨、惠更斯和约5翰伯努利均发表了自己的解答。 ( )2四、简答题(每小题 10 分,计 30 分)1、欧几
7、里得的几何原本对数学以及整个科学的发展有什么重要意义?答:欧几里得的几何原本可以说是数学史上的第一座理论丰碑。它最大的功绩,是在于数学中演绎范式的确立,这种范式要求一门学科中的每一个命题必须是在它之前已建立的一些命题的逻辑结论,而所有这样的推理链的共同出发点是一些基本定义和被认为是不证自明的基本原理公设或公理。这就是后来所谓的公理化思想。 ( )6(B 卷)第 3 页(共 4 页)班级 学号 姓名 密 封 线 内 不 得 答 题2、罗巴切夫斯基的非欧几何。答:罗巴切夫斯基于 1825 年完成专著平行线理论和几何原理概论及证明标志着非欧几何的诞生,该理论是对几何原理中第五公设的研究提出命题“过直
8、线外一点与已知直线平行的直线至少有两条” ,并进行严格逻辑推理,得出的几何理论。 3、简述刘徽在几何方面的主要成就。答:刘徽于公元 263 年撰九章算术注 。 ( )2他在几何方面的主要成就是:(1)提出割圆术,其基本思想是“化圆为方” ,并借助于极限的方法。 ()2(2)运用“出入相补原理”和无限小方法,证明了九章算术中的一些体积公式。 ( )2(3)用截面法证明了正方体内切球与牟合方盖的体积之比为 :4,为祖冲之父子最终求出球体体积公式指明了方向。 ( )2(4)进一步发展了中国古代的重差理论。 ( )五、论述题(10 分)论述非欧几何诞生的意义。要点:非欧几何的产生与发展,在客观上对研究了 2000 多年的第五公设作了总结,它引起了人们对数学本质的深入探讨,影响着现代自然科学、现代数学和数学哲学的发展。其一,随着非欧几何的产生,引起了数学家们对几何基础的研究,从而从根本上改变了人们的几何观念,扩大了几何学的研究对象,使几何学的研究对象由图形的性质进入到抽象空间,即更一般的空间形式,使几何的发展进入了一个以抽象为特征的崭新阶段。 ( )4其二,非欧几何的产生,引起了一些重要数学分支如数的概念、分析基础、数学基础、数理逻辑等的产生,公理化方法也获得进一步的完善。 ( )4(B 卷)第 4 页(共 4 页)班级 学号 姓名 密 封 线 内 不 得 答 题