收藏 分享(赏)

数学建模 。下料问题.ppt

上传人:kpmy5893 文档编号:8215697 上传时间:2019-06-15 格式:PPT 页数:18 大小:367KB
下载 相关 举报
数学建模  。下料问题.ppt_第1页
第1页 / 共18页
数学建模  。下料问题.ppt_第2页
第2页 / 共18页
数学建模  。下料问题.ppt_第3页
第3页 / 共18页
数学建模  。下料问题.ppt_第4页
第4页 / 共18页
数学建模  。下料问题.ppt_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、2019/6/15,整数规划的数学模型,Max(Min)(c1 x1+ c2 x2 + cn xn ) a11 x1+ a12 x2 + a1n xn (=,) b1 a21 x1+ a22 x2 + a2n xn (=,) b2 . am1 x1+ am2 x2 + amn xn (=,) bm x1n 0 且取整数 纯整数规划: 所有变量都有取整约束 混合整数规划: 只有部分变量有取整约束 ,生产中通过切割、剪裁、冲压等手段,将原材料加工成所需大小,钢管和易拉罐下料,原料下料问题,按照工艺要求,确定下料方案,使所用材料最省,或利润最大,问题1. 如何下料最节省 ?,例1 钢管下料,问题2.

2、 客户增加需求:,节省的标准是什么?,由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过3种。如何下料最节省?,按照客户需要在一根原料钢管上安排切割的一种组合。,切割模式,合理切割模式的余料应小于客户需要钢管的最小尺寸,钢管下料,为满足客户需要,按照哪些种合理模式,每种模式切割多少根原料钢管,最为节省?,合理切割模式,2. 所用原料钢管总根数最少,钢管下料问题1,两种标准,1. 原料钢管剩余总余量最小,xi 按第i 种模式切割的原料钢管根数(i=1,2,7),约束,满足需求,决策变量,目标1(总余量),按模式2切割12根,按模式5切割15根,余料27米,最优解:x2=12,

3、x5=15, 其余为0; 最优值:27。,整数约束: xi 为整数,当余料没有用处时,通常以总根数最少为目标,目标2(总根数),钢管下料问题1,约束条件不变,最优解:x2=15, x5=5, x7=5, 其余为0; 最优值:25。,xi 为整数,按模式2切割15根,按模式5切割5根,按模式7切割5根,共25根,余料35米,虽余料增加8米,但减少了2根,与目标1的结果“共切割27根,余料27米” 相比,钢管下料问题2,对大规模问题,用模型的约束条件界定合理模式,增加一种需求:5米10根;切割模式不超过3种。,现有4种需求:4米50根,5米10根,6米20根,8米15根,用枚举法确定合理切割模式,

4、过于复杂。,决策变量,xi 按第i 种模式切割的原料钢管根数(i=1,2,3),r1i, r2i, r3i, r4i 第i 种切割模式下,每根原料钢管生产4米、5米、6米和8米长的钢管的数量,满足需求,模式合理:每根余料不超过3米,整数非线性规划模型,钢管下料问题2,目标函数(总根数),约束条件,整数约束: xi ,r1i, r2i, r3i, r4i (i=1,2,3)为整数,增加约束,缩小可行域,便于求解,原料钢管总根数下界:,特殊生产计划:对每根原料钢管 模式1:切割成4根4米钢管,需13根; 模式2:切割成1根5米和2根6米钢管,需10根; 模式3:切割成2根8米钢管,需8根。 原料钢

5、管总根数上界:13+10+8=31,模式排列顺序可任定,钢管下料问题2,需求:4米50根,5米10根,6米20根,8米15根,每根原料钢管长19米,LINGO求解整数非线性规划模型,Local optimal solution found at iteration: 12211Objective value: 28.00000 Variable Value Reduced Cost X1 10.00000 0.000000 X2 10.00000 2.000000 X3 8.000000 1.000000 R11 3.000000 0.000000 R12 2.000000 0.000000

6、R13 0.000000 0.000000 R21 0.000000 0.000000 R22 1.000000 0.000000 R23 0.000000 0.000000 R31 1.000000 0.000000 R32 1.000000 0.000000 R33 0.000000 0.000000 R41 0.000000 0.000000 R42 0.000000 0.000000 R43 2.000000 0.000000,模式1:每根原料钢管切割成3根4米和1根6米钢管,共10根; 模式2:每根原料钢管切割成2根4米、1根5米和1根6米钢管,共10根; 模式3:每根原料钢管切割成

7、2根8米钢管,共8根。 原料钢管总根数为28根。,板材规格2: 长方形, 3228cm, 2万张。,例2 易拉罐下料,每周工作40小时,每只易拉罐利润0.10元,原料余料损失0.001元 / cm2(不能装配的罐身、盖、底也是余料),罐身高10cm,上盖、下底直径均5cm。,板材规格1: 正方形,边长24cm,5万张。,如何安排每周生产?,模式1: 正方形 边长24cm,问题分析,计算各种模式下的余料损失,上、下底直径d=5cm,罐身高h=10cm。,模式1 余料损失 242-10d2/4 - dh=222.6 cm2,问题分析,目标:易拉罐利润扣除原料余料损失后的净利润最大,约束:每周工作时

8、间不超过40小时;原料数量:规格1(模式1 3)5万张,规格2(模式4)2万张;罐身和底、盖的配套组装 。,注意:不能装配的罐身、上下底也是余料,决策变量,xi 按照第i 种模式的生产张数(i=1,2,3,4); y1 一周生产的易拉罐个数; y2 不配套的罐身个数; y3 不配套的底、盖个数。,模型建立,目标,约束条件,时间约束,原料约束,模型建立,y1 易拉罐个数;y2 不配套的罐身; y3 不配套的底、盖。,每只易拉罐利润0.10元,余料损失0.001元 / cm2,罐身面积dh=157.1 cm2 底盖面积d2/4=19.6 cm2,(40小时),约束条件,配套约束,y1 易拉罐个数;

9、y2 不配套的罐身; y3 不配套的底、盖。,虽然xi和y1,y2,y3应是整数,但是因生产量很大,可以把它们看成实数,从而用线性规划模型处理 。,将所有决策变量扩大10000倍(xi 万张,yi 万件),LINDO发出警告信息:“数据之间的数量级差别太大,建议进行预处理,缩小数据之间的差别”,模式2生产40125张, 模式3生产3750张, 模式4生产20000张, 共产易拉罐160250个 (罐身和底、盖无剩余), 净利润为4298元,模型求解,OBJECTIVE FUNCTION VALUE1) 0.4298337 VARIABLE VALUE REDUCED COSTY1 16.025000 0.000000X1 0.000000 0.000050X2 4.012500 0.000000X3 0.375000 0.000000X4 2.000000 0.000000Y2 0.000000 0.223331Y3 0.000000 0.036484,下料问题的建模,确定下料模式,构造优化模型,规格不太多,可枚举下料模式,建立整数线性规划模型,否则要构造整数非线性规划模型,求解困难,可用缩小可行域的方法进行化简,但要保证最优解的存在。,一维问题(如钢管下料),二维问题(如易拉罐下料),具体问题具体分析(比较复杂 ),

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报