,第七节,主要内容:,一、 弧微分,二、 曲率及其计算公式,三、 曲率圆与曲率半径,平面曲线的曲率,第三章,1,一、 弧微分,设,在(a , b)内有连续导数,其图形为 AB,弧长,2,则弧长微分公式为,或,若曲线由参数方程表示:,3,二、曲率及其计算公式,在光滑弧上自点 M 开始取弧段, 其长为,对应切线,定义,弧段 上的平均曲率,点 M 处的曲率,注意: 直线上任意点处的曲率为 0 !,转角为,4,曲线的弯曲程度,与切线的转角有关,与曲线的弧长有关,例1. 求半径为R 的圆上任意点处的曲率 .,解: 如图所示 ,可见: R 愈小, 则K 愈大 , 圆弧弯曲得愈厉害 ;,R 愈大, 则K 愈小 , 圆弧弯曲得愈小 .,5,计算公式-,6,(1) 若曲线由参数方程,给出, 则,(2) 若曲线方程为,则,7,三、 曲率圆与曲率半径,设 M 为曲线 C 上任一点 ,在点,在曲线,把以 D 为中心, R 为半径的圆叫做曲线在点 M 处的,曲率圆,( 密切圆 ) ,R 叫做曲率半径,D 叫做,曲率中心.,在点M 处曲率圆与曲线有下列密切关系:,(1) 有公切线;,(2) 凹向一致;,(3) 曲率相同 .,M 处作曲线的切线和法线,的凹向一侧法线上取点 D 使,8,内容小结,1. 弧长微分,或,2. 曲率公式,3. 曲率圆,曲率半径,9,