收藏 分享(赏)

紫薯干燥机生产.doc

上传人:kpmy5893 文档编号:7932622 上传时间:2019-05-30 格式:DOC 页数:11 大小:786KB
下载 相关 举报
紫薯干燥机生产.doc_第1页
第1页 / 共11页
紫薯干燥机生产.doc_第2页
第2页 / 共11页
紫薯干燥机生产.doc_第3页
第3页 / 共11页
紫薯干燥机生产.doc_第4页
第4页 / 共11页
紫薯干燥机生产.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、紫薯干燥机生产2、使用前必须认真检查转动部位是否灵活无碰撞,调节机构是否正常,安全设施是否齐全有效;要确保机内无杂物,各润滑部位要加注润滑油。3、开机前应清理作业场地,不得放一些与脱粒无关的杂物;要禁止儿童在场地边上玩耍,以免发生事故。产品介绍:薯类特种食品级带式干燥机是在传统网带式干燥机基础上研究开发的特种型设备,具有较强的针对性,实用性,能源效率高广泛适用于各类地区性和季节性蔬菜、果品的脱水干燥。如:蒜片、南瓜、魔芋、白萝卜、薯类、竹笋等。我们在为用户生产制作设备时, 根据所需干燥产品的特性,用户工艺要求,结合几十年来积累的经验,为用户设计制作出最适用品质最佳的蔬菜干燥设备。薯类特种食品级

2、带式干燥机是成批生产用的自动化连续式干燥设备,主要有带式输送机,漂烫机,蔬菜清洗机,自动上料机,干燥主机。燃煤热风炉,传动,控制系统等组成。具有自动进料,自动出料,自动控制的功能,热能用量少,生产效率高,操作简单,维修方便,适用范围广。可自动调温,自动调速,可适是目前脱水蔬菜行业自动化程度较高的干燥设备。对温度不允许高的物料尤为合适;改系列干燥机具有干燥速度快。蒸发强度高。产品质量高的特点。薯类特种食品级带式干燥机是烘干物料同于重力的作用,从上层网带慢慢掉落到下层网带的时侯实现了物料的均与翻身,热风充分的和物料接触干燥,蒸发水份从而提高了干燥质量,保证了物料干燥的均匀度。进、出料端在设备的两端

3、,加料采用自动上料机,采用变频控制,可以根据各种物料的性质调节。出料端是采用自动出料,操作非常方便,本设备生产成本低,企业利润高。是脱水蔬菜、中药材饮片、果品行业最理想的先进干燥加工设备。工作原理:蔬菜脱水干燥机分别有加料器、干燥床、热交换器及排湿风机等主要部件组成。干燥机工作时冷空气通过热交换器进行加热,采用科学合理的循环方式,使热空气穿流通过床面上的被干燥物料进行均匀的热质交换,机体各单元内热气流在循环风机的作用下进行热风循环,最后排出低温高湿度的空气,平稳高效地完成整个干燥过程性能特点:干燥面积、风压、风量、干燥温度网带运转速度均可调节以适应蔬菜的特性及品质要求。可根据蔬菜特点,采用不同

4、的工艺流程及添加配套必要的辅助设备适应物料能满足根、茎、叶类条状、块状、片状、大颗粒状等蔬菜物料的干燥和大批量连续生产,同时能最大限度的保留产品的营养成份及颜色等。带式干燥机一、概述带式干燥机由若干个独立的单元段所组成,每个单元段包括循环风机、加热装置、单独或公用的新鲜空气抽入系统和尾气排出系统。因此,对干燥介质数量、温度、湿度和尾气循环量等操作参数,可独立控制,从而保证工作的可靠性和操作条件的优化。带式干燥机操作灵活,湿物料进料、干燥过程在完全密封的箱体内进行,自动化程度高,劳动条件好,避免了粉尘的外泄。带式干燥机的被干燥物料随同输送带移动,物料颗粒间的相对位置比较固定,干燥时间基本相同。带

5、式干燥机非常适用于要求干燥物料色泽变化一致或湿含量均匀的物料干燥。结构简单,常用于干燥速度要求较低、干燥时间较长,在干燥过程中工艺操作条件要保持恒定的场合,如谷物类、米饼类食品。产品相关知识:新型粉煤灰烘干机技术性能介绍 粉煤灰烘干技术是生产粉煤灰、矿渣等微粉必须配套的关键技术,我针对湿粉煤灰水份大,比重小,粒度细等显著特点,开发出新型高效粉煤灰烘干机,该设备与其他干燥设备相比,生产能力大,可连续操作;结构简单,操作方便;故障少,维修费用低;适用范围广,流体阻力小,可以用它干燥颗料状物料,对于那些附着性大的物料也很有利;操作弹性大,生产上允许产品的流量有较大波动范围,不会影响产品的质量;清扫容

6、易。目前该套设备已在河南、安徽等多家企业投入使用,并创造出可观的经济效益。新型粉煤灰烘干机节能,高效,环保。近年来我国水泥产业的资源综合利用取得重大突破,水泥行业消纳的废弃物在全国固体废弃物利用总量中超过 80%。水泥行业通过采用少熟料、多微粉、低本钱水泥出产技术,可以最大限度地消耗电力、冶金、煤炭产业出产的粉煤灰、矿渣、煤矸石和其他产业废渣。我国传统水泥出产工艺采用熟料、混合材混合磨粉,磨机产量低、能耗高,矿渣等废渣仅作为混合材使用,掺入量不超过 30%。采用熟料、矿渣分别粉磨工艺,利用矿渣等微粉在高细状态下活性好可作为水泥主要组分的特点,配制“勾兑”水泥,混合材掺量达到 50%-60%,可

7、大幅度降低水泥出产本钱。利用产业废渣出产的水泥,基于各种废渣微粉掺合料的公道匹配,能进步混凝土的致密性,形成低致密、高密度、低缺陷的混凝土结构,大大进步混凝土的使用寿命。我国每年产生的矿渣等产业废弃物达 15 亿-16 亿吨,粉煤灰和煤矸石达 4 亿-6 亿吨,在部门地区泛滥成灾。充分利用当地廉价的粉煤灰、矿渣等废弃资源出产低本钱高机能绿色水泥,是各地区水泥制造转型的重要途径。节能降耗是建设节约型社会、创建和谐社会的重要前提,也是水泥企业利润增长的最有效途径。节能在于进步效率,而决定粉磨效率进步的枢纽,在于降低原料的含水率。因为粉煤灰、矿渣等进厂时水份过大,不利于研磨,造成粉磨系统产量低、饱磨

8、及糊磨等磨内工况恶化现象,进磨前必需首先烘干脱水。因此,粉煤灰烘干机的出品为粉煤灰的综合利用提供好的发展远景。新型粉煤灰烘干机高产节能技术是出产粉煤灰、矿渣等微粉必需配套的枢纽设备,在晋升水泥节能方面,较离心式脱水设备、旧立式烘干机,在设计理念、节能效果和实际应用中都有很大的突破。旧立式烘干机。设备由外置式燃烧炉、立式烘干机主机和环保设备组成,立式烘干机内部砌有耐火砖,腹腔有多组集料斗和滑料盆。其工作原理是:物料由输送设备送入立式烘干机上部,靠自身重力通过集料斗、滑料盆下降、沉落。燃烧炉产生热能,通过立式烘干机热交换后,经环保设备排出。固然集料斗和滑料盆的角度延缓了物料下降的速度,延长了物料的

9、热交换时间,但物料在集料斗和滑料盆滑行属中央卸料,所形成的风洞也是在用大量的热空气过滤物料,加之筒体燃烧炉的持续散热,热能利用率也仅在 50%左右。该设备的长处是:占地面积小、投资少;缺点是:煤耗高,热能利用率 50%左右;电耗高,吨干料耗电 4kWh 左右;适应性差,常常发生卡料、堵料;对供热用煤要求较严;烘干质量无法控制。以往的离心式脱水机械,设备昂贵,产能低,脱水幅度小,通常只能一次降水 10%左右,尚存 15-20%的含水量。新型的粉煤灰烘干机全套工艺由三大部门组成:供热系统、热交换系统和透风除尘系统。供热系统部门采用热风炉技术,热力充足、传热效果好、结构简朴;热交换系统即为烘干滚筒,

10、筒体内扬料板交错排列成螺旋形,反复扬撒物料,热交换效率极高;透风除尘系统即需配备除尘器,因为粉煤灰颗粒细、密度轻,干燥后在负压状态下,易被气流带走,导致流体介质发生变化,且含尘气体水份较大,防止被引风系统吸出排入大气造成资源铺张及环境污染,由除尘器统一收尘。粉煤灰烘干机将湿灰先由输送机送入卧式旋切机进行破碎,以防块状物料进入烘干筒内影响烘干效果,破碎后的物料再送入烘干滚筒,筒体内有良多抄板,排列为螺旋形,通过筒体的旋转带动抄板将物料不停的抛起、扬撒,且筒壁的击打装置再次对物料进行破碎,扬起的物料与由引风系统传入的热气流充分接触,进行热交换,蒸发水分,完成干燥,由出料口排出,排出的含尘湿气经由除

11、尘设备统一收尘。锯末烘干机的是如何进行工作级及产品优势 锯末烘干机的是如何进行工作的。主要工作原理:木屑进入锯末烘干机的滚筒内由喷吹管与回转筒体共同作用,在筒内沸腾流化,热风与物料充分触,完成干燥,气流式锯末烘干机,所谓气流干燥是指把粉粒体状湿锯末,采用螺旋输送机将其连续加入干燥管内,在高速热气流的输送和分散中。锯末烘干机是伽利略重工专门为锯末、木屑、小木片、木皮、木材等湿物料的烘干而专业设计制造的,具有烘干速度快,产量大,节能效果显著,低维护等特点。锯末烘干机使湿物料的中的水分蒸发,得到粉状或粒状干燥产品的过程,主要由空气加热器、加料器、气流干燥管、旋风分离器、风机等组成。鸡粪烘干机的特点,

12、我们就为您介绍到这里。伽利略机械集科研、生产、营销为一体,企业以市场为导向,靠科技创新和管理创新推动发展,主要生产型沙烘干机为主的厂家。如何正确选购转筒烘干机 所谓转筒烘干机,也称为转筒干燥机。它应用范围广泛,主要应用于建材、冶金、化工和水泥等行业,烘干的物料主要有矿渣石灰石、煤灰、矿渣、粘土等。该机主要由回转体、扬料板,传动装置,支撑装置及密封圈等部件组成。并具有结构合理,制作精良,产量高,能耗低,运转方便等优点。同时,转筒干燥机也可应用于复合肥生产,烘干一定湿度和粒度的肥料,该机还具有热能利用率高,干燥均匀,清理物料次数少,适用维修方便等特点。那么如何选购转筒烘干机呢?正确选购转筒烘干机有

13、哪些方法呢?下面就简单介绍一下如何正确选购转筒烘干机。我们要知道,通常直接传热转筒烘干机的干燥介质是烟道气,这里我们就要分为是顺流式干燥还是逆流式干燥两个方面来说:首先,先了解一下什么是顺流式干燥和逆流式干燥。所谓顺流式干燥是它的燃烧室和湿物料进料是在同一端,热气流的方向和物料的运动方向是一致的,湿物料是从进料端向排聊端转移,热空气也是从进料端在鼓风机与引风机的作用下井排料端流出,在这个流动的过程中湿物料随热空气的加热而干燥;所谓逆流式干燥是指湿物料是从进料端进入烘干机,燃烧室是在排料端,在这个过程中,物料与热空气是做反向运动的,湿物料在运动的过程中因受热而被干燥。其次,在选购时,具体选用何种

14、方式的干燥由被干燥物料的最终要求而定。不过我们要知道,顺流式干燥初期干燥推动力较大,以后随物料温度的升高,干燥介质的温度会随之降低,这比较适用于对最终含水量(即干燥程度)要求不高的物料。逆流式干燥在干燥过程中,由于干燥推动力比较均匀,所以适宜于被干燥物料要求较严的干燥。烘干机的操作流程及使用时的注意事项 对烘干机了解的人都知道,熟练掌握烘干机的操作流程及使用时的注意事项很重要,因为这关乎烘干机能否正常使用,并能在使用的过程中避免很多不必要的麻烦。下面就简单介绍一下烘干机的操作流程及使用时的注意事项。首先,关于烘干机的操作流程,我们主要从五个方面来浅谈。第一是在操作前,应先打开烘干机的进料门,把

15、脱水后的织物放入转筒内,然后把进料门关闭并锁紧;第二是在合适的时间,把定时旋转的按钮转到所需的位置;第三是在做好前面的准备工作后,启动烘干机的烘干按钮,转筒和抽风机,开始进行正常的烘干工作;第四是在烘干的过程中,应时刻关注被烘干的织物,以便在发生意外时能立即采取措施;第五是在烘干过程中,机器发生故障时,应立即停车,及时找出发生故障的原因并及时排除。其次,关于使用时的注意事项,主要从三个方面来阐述:第一要注意烘干机启动前,一定要先将进料门关闭锁紧,取织物时要确保机器停止运行,以免发生意外;第二是要对引风机滤网经常清洗,保持干净;第三是使用装置要按照相关规定进行,不要违反国家的相关标准等。真空干燥

16、如何提升利润率? 虽说树脂干燥机通常被称作“辅助”设备,但对其类型选择的决定却有可能对一家塑料加工的业务策略起到主导作用。这一点对比利时(的一家子)来说正是这样,是一家全球性的跨行业生产厂家,业务重点涉及电子与电气(E&E)设备组件的注塑成型。通过放弃传统的热风干燥机,转而采用一种基于真空干燥原理的崭新类型的设备(图 1) ,完成了其位于比利时的哈瑟尔特(Hasselt) 工厂的整个注塑成型工艺的简化,获得了大幅节约并提升了产品质量。 如同其它的电子与电气(E&E)设备供货商一样,正面对三项战略性的挑战: 1)激烈的价格竞争对供货商造成无情的压力,促使他们削减成本、提高生产效率; 2)客户们对

17、产品质量与均衡性的苛刻要求; 3)能源成本将居高不下的长期预期。 真空干燥机的最显而易见的好处涉及上述第三项挑战:同类似规格的热风干燥机(图2)相比,真空干燥机在完全干燥树脂时可以节省 80的能量。然而由于其完工的同时只需原来六分之一的时间,使用真空干燥机也就有机会大幅提高生产效率。短期来说,这可以提前厂家在星期一早晨开始生产时的“冷启动”时间;而从长远来看,它能提供方便使实际运作更为精简、集中。最后,真空干燥机所提供的更短的驻留时间以及更高的干燥效率能够减少产品缺陷,降低废品率。 在哈瑟尔特工厂使用的 40 台成型机中有 26 台是用于注塑聚酰胺 6.6 材料,以将其制成 AA 和 AAA

18、型号电池的小型安全盖。该动用了 12 个热风干燥机以干燥 26 个压模机中的树脂。通过使用三台美奎?LPTM 真空干燥机取而代之(第四台新 LPD 真空干燥机供紧急情况下备用) ,据的技术经理 Rudi Vermeulen 先生所述,该取得了以下的成效: 能源成本节省。能源消耗减少 92%,节约了 15,700 欧元。相应的成本节省还不包括Vermeulen 先生估计的电力部门所额外征收的 5,000 欧元高峰用电罚金,也不包括Vermeulen 先生所估计的 “极大的”工厂内用于以排除由热风干燥机所产生热能所消耗空调用电的能源节省。 生产时间延长。通过减少星期一早晨冷启动的时间,获得了每年

19、192 小时额外的满负荷生产时间。据 Vermeulen 先生粗略估计,如果假设销售水准能足以维持工厂的满负荷生产,这一新增的生产能力可以带来每年额外的 57,600 欧元的可销售产品量。 精简与自动化。虽说 12 台热风干燥机中的任一台能够满足不超过 2 台注塑机对生产能力的需求,真空干燥机的干燥周期更短,这一点使得能够将其 26 个电池盖生产线转换为一条 PLC 控制的中央传送系统。从 12 个热风干燥机到 3 台(实际投入使用)真空干燥机的转换带来了 2,970 欧元,或 92的预防性维修节省。由袋装包改为散装容器包装每年可以节省 11,800 欧元的费用。 次品率/废品率降低。据 Ve

20、rmeulen 先生所述,由于避免了过度干燥、且产出的树脂所含残留湿气较热风干燥机所加工树脂更少,真空干燥机大大减少了废品率。 Vermeulen 先生表示,由废品减少、空调成本降低以及生产效率提高所带来的具体节省数据仍有待统计,这是由于该最近才安装了真空干燥机与中央进料系统。以上计算出的现有按年统计的其他成本节省数据达到了 35,470 欧元。这些节省,加上每年 57,600 欧元的增加产出,共计为 93,070 欧元。 由于中央进料系统以及 4 台真空干燥机的投资成本共计 100,000 欧元,整体计算下来的节省数目足以让厂家在一年多一点的时间内收回投资成本。如果等到另外一些节省数据整理完

21、毕后再将其统计在内,实际收回成本时间将少于一年。 新式干燥操作加快注塑机启动 的真空干燥机只需极短时间与能耗就可准备好一批树脂以备加工,这是由于他们的设计与运作模式与标准的热风/除湿干燥机在两方面有差异: 真空干燥机使用真空以降低水的沸点从而迅速将潮湿转化为水汽,真正地将水汽从树脂颗粒内移除,而不是用干燥的热风覆盖树脂颗粒再缓慢地去除其中的潮气。 真空干燥机在三个分开的标记位置同时进行加热与真空干燥处理,达到小批量产出,从而将批量加工过程实际上转化为一个不间断的加工过程,做到与加工机器的产出保持同步。 真空干燥机小批量的批次产出及短暂干燥周期使得只需 40 分钟就能准备好充分干燥的树脂为铸模机

22、加料,而不是他们传统使用干燥机所需的 4 小时。这就是为什么该能够缩短其星期一启动时间的原因。 为了在哈瑟尔特工厂铸造电池安全盖,使用了 20 台 50 吨及 5 台 10 吨的注塑压模机。这些机器一年 236 个工作日每天分三班轮流作业,其中每个班次需要两位操作工看护。星期一早晨启动时这两人都需要启动每台机器。由于启动时 50 吨压模机需要 30 分钟而 10 吨压模机需要 15 分钟完成启动步骤,需要 12 个小时才能让 26 台机器全部达到满负荷生产状态这还不包括充分干燥树脂所需的时间。 如果使用传统的热风干燥机,干燥时间还需要额外的 4 小时,即还需要 16 个小时才能全部达到满负荷生

23、产状态。由于能够及时准备好经过充分干燥的树脂以配合第一台铸模机的启动,真空干燥机节省了这段额外时间。 此外,据 Rudi Vermeulen 先生介绍,12 台热风干燥机的启动操作复杂,而且必须一次启动一台;而相比之下真空干燥机启动简便,且只需要其中的 3 台来配合 26 台铸模机生产。“我们设置好了定时器,星期一早晨真空干燥机会比以前旧的干燥机提前 1 小时启动, ” Vermeulen 先生说道, “当操作员按时到岗时,由于可以提供干燥的树脂,他们能够立即启动第一台注塑机。 ”解析常用混合机的原理 混合机械是利用机械力和重力等,将两种或两种以上物料均匀混合起来的机械。混合机械广泛用于各类工

24、业和日常生活中。混合机械可以将多种物料配合成均匀的混合物,如将水泥、砂、碎石和水混合成混凝土湿料等;还可以增加物料接触表面积,以促进化学反应;还能够加速物理变化,例如粒状溶质加入溶剂,通过混合机械的作用可加速溶解混匀。常用的混合机械分为气体和低粘度液体混合器、中高粘度液体和膏状物混合机械、热塑性物料混合机、粉状与粒状固体物料混合机械四大类。气体和低黏度液体混合机械的特点是结构简单,且无转动部件,维护检修量小,能耗低。这类混合机械又分为气流搅拌、管道混合、射流混合和强制循环混合等四种。中、高黏度液体和膏状物的混合机械,一般具有强的剪切作用;热塑性的物料混合机主要用于热塑性物料(如橡胶和塑料 )与

25、添加剂混合;粉状、粒状固体物料混合机械多为间歇操作,也包括兼有混合和研磨作用的机械,如轮辗机等。混合时要求所有参与混合的物料均匀分布。混合的程度分为理想混合、随机混合和完全不相混三种状态。各种物料在混合机械中的混合程度,取决于待混物料的比例、物理状态和特性,以及所用混合机械的类型和混合操作持续的时间等因素。液体的混合主要靠机械搅拌器、气流和待混液体的射流等,使待混物料受到搅动,以达到均匀混合。搅动引起部分液体流动,流动液体又推动其周围的液体,结果在溶器内形成循环液流,由此产生的液体之间的扩散称为主体对流扩散。当搅动引起的液体流动速度很高时,在高速液流与周围低速液流之间的界面上出现剪切作用,从而

26、产生大量的局部性漩涡。这些漩涡迅速向四周扩散,又把更多的液体卷进漩涡中来,在小范围内形成的紊乱对流扩散称为涡流扩散。机械搅拌器的运动部件在旋转时也会对液体产生剪切作用,液体在流经器壁和安装在容器内的各种固定构件时,也要受到剪切作用,这些剪切作用都会引起许多局部涡流扩散。搅拌引起的主体对流扩散和涡流扩散,增加了不同液体间分子扩散的表面积减少了扩散距离,从而缩短了分子扩散的时间。若待混液体的粘度不高,可以在不长的搅拌时间内达到随机混合的状态;若粘度较高,则需较长的混合时间。对于密度、成分不同、互不相溶的液体,搅拌产生的剪切作用和强烈的湍动将密度大的液体撕碎成小液滴并使其均匀地分散到主液体中。搅拌产

27、生的液体流动速度必须大于液滴的沉降速度。少量不溶解的粉状固体与液体的混合机理,与密度成分不同,互不相溶的液体的混合机理相同,只是搅拌不能改变粉状固体的粒度。若混合前固体颗粒不能使其沉降速度小于液体的流动速度,无论采用何种搅拌方式都形不成均匀的悬浮液。不同膏状物的混合主要是将待混物料反复分割并使其受到压、辗、挤等动作所产生的强剪切作用,随后又经反复合并、捏合,最后达到所要求的混合程度。这种混合很难达到理想混合,仅能达到随机混合。粉状固体与少量液体混合后为膏状物,其混合机理与膏状物料混合的机理相同。不同的热塑性物料以及热塑性物料与少量粉状固体的混合,需要依靠强剪切作用,反复地揉搓和捏合,才能达到随

28、机混合。流动性好的颗粒状固体物主要是靠容器本身的回转,或靠装在容器内运动部件的作用,反复地翻动、掺和而得以混合,这类物料也可用气流产生对流或湍流以达到混合。固体颗粒的对流或湍流不易产生涡流,混合速度远低于液体的混合,混合程度一般也只能达到随机混合。流动性很差的、互相发生粘附的颗粒或粉状固体,则常需用带有机械翻动和压、辗等动作的混合机械。煤泥烘干机的亮点解读 煤泥烘干机为煤泥的利用开辟了新的路径,要是按划一发烧量计价煤泥烘干机,市场远景较为辽阔,此煤泥的利用题目非常紧急煤泥烘干机,代替矿区的部分自用煤。煤泥烘干机差别的物料特性决定特定的烘干工艺,可对我国煤炭提供紧急场合场面的缓解有所助益,选择精

29、确的烘干工艺非常紧张,而且烘干本钱高,既可节省能源、进步效益煤泥烘干机,烘干难度大,诚信可靠煤泥烘干机,使之变废为宝煤泥烘干机,原来作为废弃物闲置堆放的煤泥的充离开辟利用已刻不容缓,低能耗、高产量,综合其他干燥设备的好处及经历自主研发的新一代气流干燥设备。红星机械将煤泥经干燥工艺处理惩罚后,煤炭等矿产资源的公道开辟和综合利用已成这样课题,得当于煤泥及种种精矿粉等的干燥脱水。我的“旋耙热潮高湿物料快速煤泥专用烘干机”煤泥烘干机,传统的烘干步伐没有针对煤泥特性煤泥烘干机。不易控制,我国原煤入洗率在 30%上下,以致大量会萃煤泥烘干机。欧诺机械第二代新型煤泥烘干机的问世,很轻易动怒。是煤炭行业扭亏增

30、盈的盼望地点煤泥烘干机,洗煤厂煤泥的烘干综合利用,还办理了煤泥堆放占用土地和污染环境等一系列题目。始终连结适温运行煤泥烘干机。煤泥烘干机有什么质量指标跟着国家可连续发展战略的实施煤泥烘干机。煤泥贩卖不畅,每年的煤泥排放量高出2000 万吨煤泥烘干机,又可淘汰矿区的环境污染;使煤泥的代价大幅度抬举,煤泥可直接用于锅炉燃烧和发电,是煤泥烘干的最理想设备,选择欧诺煤泥烘干机煤泥烘干机。实现当场消化,煤泥是一种含水率高、粘度大、易粘结成团的一种块状物料,不但能孕育产生可观的经济效益。选择正确的干燥技术 物料的干燥对于每一个塑料加工商来说都是不可避免的。同时,为了生产出高质量的产品,这一过程也是非常重要

31、的。选择合理的干燥技术有助于节约成本、降低能耗,而对干燥技术和成本的正确评估对于选择合适的干燥技术具有重要的意义。 水含量的增加会逐渐降低物料的剪切黏度。在加工过程中,由于熔体流动性能的变化,产品的质量以及一系列的加工工艺参数也会随之发生相应的变化。例如,停滞时间过长会使残余水分含量太低从而造成黏度的增加,这将导致填模不充分,同时也会造成物料发黄。另外,某些性能的变化并不能直接用肉眼观察到,而只有通过对材料进行相关的测试才能发现,如机械性能和介电强度的改变。 在选择干燥过程时,鉴别材料的干燥性能具有至关重要的意义。物料可以分成吸湿性和非吸湿性两种。吸湿性物料能够从周围环境吸收水分,非吸湿性材料

32、不能从环境中吸收水分。对于非吸湿性物料,任何环境中存在的水分都保留在表面,成为“表面水分”而易于被清除。不过由非吸湿性物料制成的胶粒也可能因为添加剂或填料的作用而变得具有吸湿性。 另外,对一个干燥工艺过程的能耗的计算,可能会与加工作业的复杂程度以及其他因素有关,所以这里所介绍的数值仅供参考。 对流式干燥 对于非吸湿性物料,可以使用热风干燥机进行干燥。因为水分只是被物料与水的界面张力松散地约束,易于去除。此类机器的原理是,利用风扇来吸收环境中的空气并将其加热到干燥特定物料所要求的温度,被加热后的空气经过干燥料斗,并通过对流的方式加热物料以除去水分。 对吸湿性物料的干燥一般分为三个干燥段:第一个干

33、燥段是将物料表面的水分蒸发掉;第二个干燥段则将蒸发的重点放在材料内部,此时干燥速度缓慢降低,而被干燥物料的温度开始上升;在最后一个阶段,物料达到与干燥气体的吸湿平衡。在这个阶段,内部和外部间的温度差別将被消除。在第三段末端,如果被干燥物料不再释放出水分,这并不意味着它不含水分,而只是表明胶粒和周围环境之间已经建立起了平衡。 在干燥技术中,空气的露点温度是一个非常重要的参数。所谓的露点温度就是在保持湿空气的含湿量不变的情况下,使其温度下降,当相对湿度达到 100%时所对应的温度。它表示空气达到水分凝结时所对应的温度。通常,用于干燥的空气的露点愈低,所获得残余水量就愈低,干燥速度也愈低。 目前,生

34、产干燥空气最为普遍的方法是利用干燥气体发生器。该设备以由两个分子筛组成的吸附性干燥器为核心,空气中的水分在这里被吸收。在干燥状态下,空气流经分子筛,分子筛吸收气体中的水分,为干燥提供除湿气体。在再生状态下,分子筛被热空气加热至再生温度。流经分子筛的气体收集被除去的水分,并将其带至周围环境中。另一种生成干燥气体的方法是降低压缩气体的压力。这种方法的好处是供应网络中的压缩气体有着较低的压力露点。在压力降低以后,其露点达到 0左右。如果需要更低的露点,可以利用膜式或吸附式干燥器在压缩空气压力降低之前进一步降低空气的露点。 在除湿空气干燥中,生产干燥气体所需的能量必须进行额外计算。在吸附式干燥中,再生

35、状态的分子筛必须从干燥态的温度(约 60)被加热至再生温度( 约 200)。为此,通常的做法是通过分子筛将被加热气体连续加热至再生温度,直至它在离开分子筛时达到特定温度。理论上再生所必要的能量由加热分子筛及其内部吸附的水所需要的能量、克服分子筛对水的附着力所需要的能量、蒸发水分和水蒸汽升温所必需的能量几个部分组成。 一般,吸附所得露点与分子筛的温度与水分携带量有关。通常,小于或等于 30的露点可以使分子筛达到 10%的水分携带量。为了制备干燥气体,由能量计算所得的理论能量需求值是 0.004kWh/m3。但是,实际中这个数值必须稍高,因为计算没有把风扇或热量损失考虑在内。通过对比,不同类型的干

36、燥气体发生器的特定能耗就可以被确定。一般来说,除湿气体干燥的能耗在 0.04kWh/kg0.12kWh/kg 之间,这要根据物料和初始水分含量而变化。在实际操作中,也可能达到 0.25kWh/kg 或更高。 干燥胶粒所需的能量由两部分组成,一部分是将物料由室温加热至干燥温度所需要的能量,另一部分是蒸发水分所需要的能量。在确定物料所需的气体量时,通常是以干燥气体进入或离开干燥料斗时的温度为基础。一定温度的干燥空气通过对流的方式将热量输送至胶粒中也是一种对流干燥过程。 在实际生产中,实际能耗值有时要比理论值高得多。例如,物料可能在干燥料斗中的停留时间过长,完成干燥所消耗的气体量较大,或者分子筛的吸

37、附能力未充分发挥等。?减少干燥气体的需求量从而削减能源成本的可行方法是采用两步法干燥料斗。在这种设备中,干燥料斗上半部的物料只是被加热而并未被干燥,所以可以用环境中空气或干燥过程的排气来完成加热。采用这种方法后,往往只需要向干燥料斗中供应通常干燥气体量的1/4?1/3,从而降低了能源成本。提高除湿气体干燥效率的另一种方法是通过热电偶和露点受控的再生,而德国 Motan 则利用天然气作为燃料来降低能源成本。 真空干燥 目前,真空干燥也进入到塑料加工领域当中,例如美国 Maguire 开发出来的真空干燥设备就已被应用到塑料加工之中。这种连续操作型的机器由安装于旋转传送带上的三个腔体组成。在第一腔体

38、处,当胶粒被填满后,通入被加热至干燥温度的气体以加热胶粒。在气体出口处,当物料达到干燥温度时即被移至抽成真空的第二腔体中。由于真空降低了水的沸点,所以水分更容易变成水蒸汽被蒸发出来,因此,水分扩散过程被加速了。由于真空的存在,从而在胶粒内部与周围空气之间产生了更大的压力差。一般情况下,物料在第二腔体中的停留时间为 20min?40min,而对于一些吸湿性较强的物料而言,最多需要停留60min。最后,物料被送到第三腔体,并由此被移出干燥器。 在除湿气体干燥和真空干燥中,加热塑料所消耗的能源是相同的,因为这两种方法是在同样的温度下进行。但是在真空干燥中,气体干燥本身并不需要消耗能源,但需要用能源来

39、创造真空,创造真空所需的能耗与所干燥物料的量以及含水量有关。 红外线干燥 干燥胶粒的另一种方法是红外线干燥工艺。在对流加热中,气体与胶粒之间、胶粒与胶粒之间以及胶粒内部的热导率都很低,因此热量的传导受到极大的限制。而采用红外线干燥时,由于分子受到红外线辐照,所吸收的能量将直接转换成热振动,这意味着物料的加热比在对流干燥中更快。与对流加热相比,在干燥过程中,除了环境空气和胶粒中水分的局部压力差以外,红外线干燥还有一个逆向的温度梯度。通常,干燥气体和受热微粒之间的温度差愈大,干燥过程就愈快。红外线干燥时间通常在 5min15min 。目前,红外线干燥过程已经被设计为转管模式,即顺着一只内壁有螺纹的

40、转管,胶粒被输送和循环,在转管的中心段有数个红外线加热器。在红外线干燥中,设备的功率可以参照0.035kWh/kg?0.105kWh/kg 的标准进行选择。如前所述,物料含水量的不同将会导致工艺参数的差別。一般,残余水分含量的不同可能是因为不同物料的流通速率不同,所以干燥过程的中断或机器的启动、停机都会引起停留时间的不同。在气体流量固定的情况下,材料流通量的不同一般表现为温度曲线的变化和排气温度的变化。干燥机制造商们以不同方法进行测量,并将干燥气体流量与被干燥物料的量相匹配,进而调整干燥料斗的温度曲线,从而使胶粒在干燥温度下经历稳定的停留时间。 另外,物料不同的初始水分含量也会导致残余水分含量

41、的不稳定。因为停留时间是固定的,初始水分含量的明显变化必将导致残余水分含量发生同样明显的变化。如果需要稳定的残余水分含量,就需要测量初始或残余的水分含量。由于相关的残余水分含量低,在线测量不易进行,而且物料在干燥系统中的停留时间较长,把残余水分含量当作输出信号会引起系统受控的问题,所以干燥机制造商们开发出来一种新的控制概念,能实现稳定的残余水分含量这一目标。这种控制概念以保持残余水含分量的稳定为目的,将塑料的初始水分量、进入和流出气体的露点、气体流动量和胶粒流通率等工艺参数作为输入变量,从而使干燥系统能够根据这些变量的不同进行及时调整,以保持稳定的残余水分含量。 红外线干燥和真空干燥是塑料加工中的新技术,这些新技术的应用极大地缩短了物料的停留时间并降低了能源消耗。但是,创新的干燥工艺其价格也相对较高。因此,近些年来,人们也在努力地提高传统除湿气体干燥的效率。所以,在做出投资决策时,应当进行精确的成本评估,不仅要考虑采购成本,还要考虑管路、能源、空间和维修保养等,以使最小的投资得到最大的回报。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报