1、4.3 探索圆的面积公式备课人: 审核人:教学内容 教材第 8789 页教学目标 1、知识目标:经历估算和小组合作操作、讨论等探索圆的面积公式的过程。2、能力目标:理解并掌握圆的面积公式,能运用公式正确进行计算。3、情感态度目标:体验推导圆的面积公式时的探索性和结论的确定性,感受转化的数学思想和方法。教学重点 圆的面积公式的推导。教学难点 能利用公式进行计算圆的面积。一、估算飞标板的面积1、出示飞标板图,让学生观察,说一说发现了什么。使学生了解飞标板被平均分成了 20 份,每份都像一个小三角形。2、提出估算飞标板表面面积的问题,启发学生利用以前学过的计算三角形面积的知识进行估算。3、交流学生估
2、算的方法和结果。把飞标板表面看作是由 20 个小三角形组成的,每个小三角形的底约是圆周长的1/20,高可近似地看作圆的半径。先求出一个小三角形的面积,再求 20 个小三角形的面积。飞标板的周长:23.1410=62.8(厘米)小三角形的面积:62.81/20102=15.7(平方厘米)飞标板的面积:15.720=314(平方厘米)4、师用课件演示并介绍:还可以把飞标板剪开,拼成近似的长方形。长方形的长约为圆周长的一半,宽可近似地看作圆的半径。然后,用长方形的面积公式计算。二、探索圆的面积公式今天我们一起来研究一个新的图形的面积:圆的面积。请你先想一想,你打算怎样研究圆面积的求解方法呢?学生独立
3、思考。师:能不能把圆也转化成学过的图形来计算呢? 你准备把它转化成什么图形来计算? 生 1:长方形。 生 2:平行四边形。 生 3:三角形。 生 4:梯形。 根据学生选择转化的图形,让学生自己寻找合作伙伴,形成合作小组,然后一同拿出课前准备好的圆形纸片开始进行实验。 2、 小组合作开展活动并汇报交流。 组 1:边是弯的,没有学过,不知道怎样求面积。 组 2:如果边是直的,就可以求了。 提示:把圆平均分成 8 份、16 份、32 份之后,再把它剪下来,拼一拼,能拼成什么图形,拼成的图形接近于我们学过的什么图形? 小组 1:我们平均分成了 8 份,拼成的图形非常接近平等四边形。 小组 2:我们把圆
4、平均分成了 16 份,拼成的图形也像个平行四边形。 小组 3:我们把圆平均分成了 16 份,拼成的图形很像一个三角形。 小组 4:我们拼的图形像个梯形。 小组 5:我们把圆平均分成了 32 份,拼成的图形更像一个平行四边形。 3、 比较分析,寻求突破点。 在电脑中显示把圆平均分成 8 份、16 份、32 份的图,并且把它们拼成近似于平行四边形的图形,让学生观察分析: 平均分成 8 份、16 份、32 份之后,拼成的图形越来越接近于什么图形? 4、 推导圆面积公式。 在把圆转化成长方形的过程中,什么变了,什么没有变? 这个长方形的面积和圆的面积有什么关系? 长方形的面积计算公式是什么? 这个长方
5、形的长和宽与圆的周长和半径有什么关系? 5、 在小组内再说一说圆面积计算公式的推导过程。进一步理解公式。 A、讨论探究,出示提示语:长方形的长相当于圆的 ,宽相当于圆的?让学生讨论之后动笔试一试,看能否推导出圆的面积公式。 B、多媒体演示公式推导过程(重点详细讲解。 ) 长方形的面积 = 长 宽 圆的面积=圆周长的一半 半径 S =(C/2) r =rr揭示字母公式,验证猜想 s=r2 提问:要求圆的面积只要知道什么就行?(半径 r) 三、试一试用圆的面积公式计算飞标版的面积。学生独立完成3.141010=314(平方厘米)四、巩固练习89 页第一题,让学生先说一说每个园的半径,再计算。第二题
6、,读题,理解题意后,让学生自主解答。五、课堂小结六、课外练习(一) 、填空题。1、把一个圆分成若干等份,剪开拼成一个近似的长方形。这个长方形的长相当于( ) ,长方形的宽就是圆的( ) 。因为长方形的面积是( ) ,所以圆的面积是( ) 2、圆的直径是 6 厘米,它的周长是( ) ,面积是( ) 。3、甲圆半径是乙圆半径的 3 倍,甲圆的周长是乙圆周长的( ) ,甲圆面积是乙圆面积的( ) 。4、一个圆的半径是 8 厘米,这个圆面积的 3/4 是( )平方厘米。5、周长相等的长方形、正方形、圆, ( )面积最大。6、一个半圆半径是 r,它的周长是( ) 。(二) 、应用题。1、有一只羊栓在草地的木桩上,绳子的长度是 4 米,这只羊最多可以吃到多少平方米的草?2、一种手榴弹爆炸后,有效杀伤范围的半径是 8 米,有效杀伤面积是多少平方米?3、一种铝制面盆是用直径 30 厘米的圆形铝板冲压而成的,要做 1000 个这样的面盆至少需要多少平方米的铝板?