1、- 电子专用设备原理与实现技术实验指导书hl- 1 -实验二 电涡流位移传感器实验一 实验目的1. 了解 TR81 系列电涡流位移传感器工作原理;2. 熟悉实验仪器,搭建传感器使用电路,掌握传感器使用过程中的注意事项;二 实验设备电源(输出电压 15V18V) 、数字万用表、探头、 11mm 延伸电缆、 、02 前置器、DZ-30 位移静校仪、百分表三 实验原理 1.电涡流效应传感器的系统工作机理是电涡流效应。当接通传感器系统电源时,在前置器内会产生一个高频电流信号,该信号通过电缆送到探头的头部,在头部周围产生交变磁场 H1。如果在磁场 H1 的范围内没有金属导体材料接近,则发射出去的交变磁场
2、的能量会全部释放;反之,如果有金属导体材料靠近探头头部,则交变磁场 H1 将在导体的表面产生电涡流场,该电涡流场也会产生一个方向与 H1 相反的交变磁场 H2。由于 H2 的反作用,就会改变探头头部线圈高频电流的幅度和相位,即改变了线圈的有效阻抗。这种变化既与电涡流效应有关,又与静磁学有关,即与金属导体的电导率、磁导率、几何形状、线圈几何参数、激励电流频率以及线圈到金属导体的距离参数有关。假定金属导体是均质的,其性能是线性和各向同性的,则线圈金属导体系统的物理性质通常可由金属导体的磁导率 、电导率 、尺寸因子 r、线圈与金属导体的距离 ,线圈激励电流强度 I 和频率 等参数来描述。因此线圈的阻
3、抗可用函数Z=F(,r,I ,)来表示。如果控制 ,r,I, 恒定不变,那么阻抗 Z 就成为距离 的单值函数,由麦克斯韦尔公式可以求得此函数为一非线性函数,其曲线为“S”形曲线,在一定范围内可以近似为一线性函数。在实际应用中,通常是将线圈密封在探头中,线圈阻抗的变化通过封装在前置器中的电子线路处理转换成电压或电流输出。这个电子线路并不是直接测量线圈的阻抗,而是采用并联諧振法,见图 2,即在前置器中将一个固图 1 电涡流作用原理图 2 传感器原理框图图 3 传感器输出特性曲线21co- 电子专用设备原理与实现技术实验指导书hl- 2 -定电容和探头线圈 LX并联并与晶体管 T 一起构成一个振荡器
4、,振荡器的振幅 UX与线圈阻抗成正比,因此振荡器的振幅 UX会随探头与被测间距 的改变而改变。U X经检波、滤波、放大、非线性修正后输出电压 UO,U O与 的关系曲线如图 3 所示,可以看出该曲线呈“S”形,即在线性区中点 O处(对应输出电压 UO)线性最好,其斜率(即灵敏度)较大,在线性区两端,斜率(即灵敏度)逐渐下降,线性变差。 ( 1, U1)为线性起点, 2, U2)为线性末点。2.TR81 系列电涡流位移传感器图 4 电涡流位移传感器系统主要包括探头、延伸电缆(用户可以根据需要选择) 、前置器和附件。前置器有三种安装方式(称为:01 前置器、02 前置器、03 前置器,参见附录)
5、。以 01 前置器为例,系统组成见图 4。(1)探头探头对正被测体表面,它能精确地探测出被测体表面相对于探头端面间隙的变化。通常探头由线圈、头部、壳体、高频电缆、高频接头组成,其典型结构见图 5 所示。图 5 探头典型结构线圈是探头的核心,它是传感器系统的敏感元件,线圈的物理尺寸和电气参数决定传感器系统的线性量程以及探头的电气参数稳定性。探头头部体采用耐高温 PPS 工程塑料,通过“二次注朔 ”成型将线圈密封其中。这项技术增强了探头头部的强度和密封性,在恶劣的环境中可以保护头部线圈能可靠工作。头部直径取决于其内部线圈直径,由于线圈直径决定传感器系统的基本性能线性量程,因此我们通常用头部直径来分
6、类和表征各型号探头,一般情况下传感器系统的线性量程大致是探头头部直径的 1/21/4 倍。我们为 TR81 系列传感器设计了3、5、8、11、14、18、25、35、36、50、60 共 11 种直径的头部。- 电子专用设备原理与实现技术实验指导书hl- 3 -探头壳体用于支撑探头头部,并作为探头安装时的装夹结构。壳体采用不锈钢制成,一般上面刻有标准螺纹,并备有锁紧螺母。为了能适应不同的应用和安装场合,探头壳体具有不同的形式和不同的螺纹及尺寸规格。高频电缆是用于联接探头头部到前置器(有时中间带有延伸电缆转接) ,这种电缆是用聚四氟乙烯绝缘的射频同轴电缆,通常电缆长度有 0.5m、 1m、5m、
7、9m 四种选择(见附录A) 。当选 0.5m 和 1m 时必须用延伸电缆以保证系统的总电缆长度为 5m 或 9m;至于选择5m 还是 9m 应该是考虑能满足将前置器安装在设备机组的同一侧来决定。根据探头的应用场合和安装环境,探头所带电缆可以配有不锈钢软管铠装(可选择) ,以保护电缆不易被损坏,对于现场安装探头电缆无管道布置的情况,应该选择铠装。探头电缆接头是军用标准高频接头。探头整体各部件通过机械变形联接,在恶劣环境中可以保证探头的稳定性和可靠性。(2)延伸电缆作为系统的一个组成部分,延伸电缆(如图 6 所示)用来联接和延长探头与前置器之间的距离,您可以对延伸电缆长度和是否需要带铠装进行选择(
8、详见附录) ,选择延伸电缆的长度应该使延伸电缆长度加探头电缆长度与配前置器所要求的长度一致(5 米或 9 米) 。铠装选择的情况同探头电缆。图 6 延伸电缆采用延伸电缆的目的是为了减短探头所带电缆长度,对于用螺纹安装探头时,需转动探头,过长的电缆不便于使电缆随探头转动,容易折断电缆。这种情形在探头安装部分有进一步说明。延伸电缆的两端接头不同,带阳螺纹的接头(转接头)与探头联接,带阴螺纹的接头与前置器联接。四 实验步骤- 电子专用设备原理与实现技术实验指导书hl- 4 -图 7 实验框图1. 连接电路如图 7;2. 装好探头、百分表、千分表或光栅;(安装探头时注意不要只转探头,以免折断线缆)3.
9、 将直流稳压电源的供电电压调到传感器系统所需电压范围; 4. 分别将稳压电源、数字三用表探头接到前置器上;5. 转动静校器的位移螺母,使探头与试件平面紧贴,再将或千分表的指针对零,或将光栅清零;(不可过度挤压探头 )6. 打开电源,转动静校器位移调节螺母,以十分之一量程为间隔,记录传感器的输出电压或电流值;7. 根据记录数据计算传感器的平均灵敏度 ,即位移和输出电压的关系。8. 根据记录数据计算传感器的平均灵敏度,非线性误差。五 数据处理 灵敏度用两点法按下式计算:式中:U1 线性起点输出电压值( V) ;U2 线性末点输出电压值( V) ;LN 线性量程(mm)S 平均灵敏度(V/mm)灵敏度误差112式LnUS 210式s- 电子专用设备原理与实现技术实验指导书hl- 5 -式中:Ss 标准灵敏度; 非线性误差非线性度式中:Ui 第 i 点输出电压( V) ;Ss 标准灵敏度(V/mm) ;Usi-第 i 点理论电压值(V ) ;非线性误差(mm) ;LN 线性量程() ; 非线性度。思考题1.试分析 TR81 系列电涡流位移传感器的频率特性;2.试分析被测体的性能参数对整个传感器系统性能的影响;3max 式SsUi 410式NL