收藏 分享(赏)

第七讲-MRI成像技术(1).doc

上传人:fmgc7290 文档编号:7834156 上传时间:2019-05-27 格式:DOC 页数:7 大小:52.50KB
下载 相关 举报
第七讲-MRI成像技术(1).doc_第1页
第1页 / 共7页
第七讲-MRI成像技术(1).doc_第2页
第2页 / 共7页
第七讲-MRI成像技术(1).doc_第3页
第3页 / 共7页
第七讲-MRI成像技术(1).doc_第4页
第4页 / 共7页
第七讲-MRI成像技术(1).doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、第七讲-MRI 成像技术(1)1 MRI 成像系统简介 1.1 MRI 影像设备发展概况影像设备发展概况 磁共振成像技术是在磁共振波谱学的基础上发展起来的。磁共振成像自出现以来曾被磁共振成像技术是在磁共振波谱学的基础上发展起来的。磁共振成像自出现以来曾被称为:核磁共振成像、自旋体层成像、核磁共振体层成像、核磁共振称为:核磁共振成像、自旋体层成像、核磁共振体层成像、核磁共振 CT 等等 。 1945 年由美国加州斯坦福大学的布洛克(年由美国加州斯坦福大学的布洛克( Bloch)和麻省哈佛大学的普塞尔)和麻省哈佛大学的普塞尔( Purcell)教授同时发现了磁共振的物理现象,即处在某一静磁场中的原

2、子核受到相)教授同时发现了磁共振的物理现象,即处在某一静磁场中的原子核受到相应频率的电磁波作用时,在它们的核能级之间发生共振跃迁现象。因此两位教授共同应频率的电磁波作用时,在它们的核能级之间发生共振跃迁现象。因此两位教授共同获得获得 1952 年诺贝尔物理学奖。年诺贝尔物理学奖。 磁共振的物理现象被发现以后,很快形成一门新兴的医学影像学科磁共振的物理现象被发现以后,很快形成一门新兴的医学影像学科 磁共振波谱学磁共振波谱学 。 1971 年纽约州立大学的达曼迪恩(Damadian)教授在科学杂志上发表了题为“核磁共振(NMR)信号可检测疾病”和“癌组织中氢的 T1 时间延长”等论文, 1973

3、年曼斯菲德(Mansfields)研制出脉冲梯度法选择成像断层。 1974 年英国科学家研制成功组织内磁共振光谱仪。 1975 年恩斯托(Ernst)研制出相位编码成像方法。 1976 年,得到了第一张人体 MR 图像(活体手指) 。 1977 年磁共振成像技术进入体层摄影实验阶段。 几十年期间,有关磁共振的研究曾在三个领域(物理、化学、生理学或医学)内获得了六次诺贝尔奖。(2003 年 10 月 6 日,瑞典卡罗林斯卡医学院宣布,2003 年诺贝尔生理学或医学奖授予美国化学家保罗劳特布尔(Paul C. Lauterbur)和英国物理学家彼得曼斯菲尔德(Peter Mansfield) ,以

4、表彰他们在医学诊断和研究领域内所使用的核磁共振成像技术领域的突破性成就。)雷蒙德达马蒂安的“用于癌组织检测的设备和方法”幻灯片 71.2 MRI 影像设备功能现代磁共振成像系统大体结构都很相似,基本上由四个系统组成:即磁体系统、梯度磁场系统、射频系统和计算机系统。 1磁体系统 磁体系统是磁共振成像系统最重要、成本最高的部件,是磁共振系统中最强大的磁场,平时我们评论磁共振设备的大小就是指静磁场的场强数值,单位用特斯拉(Tesla,简称 T,垂直于磁场方向的 1 米长的导线,通过 1 安培的电流,受到磁场的作用力为 1 牛顿时,通电导线所在处的磁感应强度就是 1 特斯拉。 )或高斯(Gauss)表

5、示,1T=1 万高斯。 临床上磁共振成像要求磁场强度在 0.053T 范围内。一般将0.3T 称为低场,0.3T1.0T 称为中场,1.0T 称为高场。磁场强度越高,信噪比越高,图像质量越好。但磁场强度过高也带来一些不利的因素。 为了获得不同场强的磁体,生产厂商制造出了不同类型的磁体,常见的磁体有永久磁体、常导磁体和超导磁体。 (1)永久磁体永久磁体是由永久磁铁(如铁氧体或铷铁)的磁砖拼砌而成。它的结构主要有两种,即环型和轭型。优点:造价低,场强可以达到 0.3T,能产生优质图像,需要功率极小,维护费用低,可装在一个相对小的房间里。缺点:磁场强度较低,磁场的均匀度和强度欠稳定,易受外界因素的影

6、响(尤其是温度) ,不能满足临床波谱研究的需要。(2)常导磁体常导磁体是根据电流产生磁场的原理设计的。当电流通过圆形线圈时,在导线的周围会产生磁场。常导磁体的线圈是由高导电性的金属导线或薄片绕制而成。它的结构主要由各种线圈组成。优点:造价较低,不用时可以停电,在 0.2T 以下可以获得较好的临床图像。缺点:磁场的不稳定性因素主要是受供电电源电压波动的影响,均匀度差。另外易受环境因素(如温度、线圈绕组的位置或尺寸)的影响.(3)超导磁体荷兰科学家昂尼斯(Kamerlingh Onnes) 在 1911 年首先发现某些物质的电阻在超低温下急剧下降为零的超导性质,电阻的突然消失意味着物质已转变为某种

7、新的状态,这些物质称为超导体。科学家昂尼斯获得了 1913 年诺贝尔物理学奖。优点:场强高,稳定性和均匀度好,因此可开发更多的临床应用功能。缺点:技术复杂和成本高。 2梯度磁场系统梯度磁场简称梯度场,梯度是指磁场强度按其磁场的位置(距离)的变化而改变,它的产生是由梯度线圈完成的,一般在主磁体空间沿着 X、Y、Z 三个方向放置。梯度线圈有三组即 GX、GY、GZ,叠加在静磁场的磁体内,当线圈通电时可在静磁场中形成梯度改变。3射频系统射频系统射频脉冲磁场简称射频脉冲(射频脉冲磁场简称射频脉冲( radio frequency, RF)是一种以正弦波震荡的射频电波。)是一种以正弦波震荡的射频电波。磁

8、共振系统中应用的频率较低,相当于调频广播磁共振系统中应用的频率较低,相当于调频广播 FM 波段,根据静磁场的强度不同其波段,根据静磁场的强度不同其 RF 频频率也不同。率也不同。射频系统作用:用来发射射频磁场,激发样品的磁化强度产生磁共振,同时,接收样品磁射频系统作用:用来发射射频磁场,激发样品的磁化强度产生磁共振,同时,接收样品磁共振发射出来的信号,通过一系列的处理,得到数字化原始数据,送给计算机进行图像重共振发射出来的信号,通过一系列的处理,得到数字化原始数据,送给计算机进行图像重建。它是由发射射频磁场部分和接收射频信号部分组成。建。它是由发射射频磁场部分和接收射频信号部分组成。4计算机系

9、统在 MRI 设备中,计算机系统包括各种规模的计算机、单片机、微处理器等,构成了 MRI设备的控制网络。信号处理系统可采用高档次微型机负责信号预处理、快速傅立叶变换和卷积反投影运算。微机系统负责信息调度(如人机交互等)与系统控制(如控制梯度磁场、射频脉冲) 。(1)主计算机系统及其功能功能:主要是控制用户与磁共振各系统之间的通信,负责对整个系统各部分的运行进行控制,使整个成像过程各部分的动作协调一致,产生所需的高质量图像。并通过运行扫描软件来满足用户的所有应用要求,如扫描控制(控制梯度磁场、射频脉冲) 、病人数据管理、归档图像、控制图像的重建和显示等、评价图像以及机器检测(包括自检)等。 组成

10、:主机、磁盘存储器、光盘存储器、控制台、主图像显示器(主诊断台) 、辅助图像显示器(辅诊断台或工作站) 、图像硬拷贝输出设备(多幅相机、激光相机) 、网络适配器、测量系统的接口部件等。主图像显示器又是控制台的一部分,用于监视扫描和机器的运行状况。(2)主计算机系统中运行的软件整个 MRI 系统从物理的观点来看可分为用户层、计算机层、接口层和测量系统等四层。从控制的观点来看,又可分为软件和硬件两层。应用软件通过操作系统等系统软件与主计算机发生联系,从而控制整个 MRI 设备的运行。如图所示。1)系统软件)系统软件系统软件用于计算机自身的管理、维护、控制和运行,以及计算机程序的翻译、装系统软件用于

11、计算机自身的管理、维护、控制和运行,以及计算机程序的翻译、装载和维护的程序组。系统软件分为操作系统(系统软件的核心)载和维护的程序组。系统软件分为操作系统(系统软件的核心) 、语言处理系统和常用例行、语言处理系统和常用例行服务程序等三个模块。服务程序等三个模块。2)应用软件)应用软件应用软件是指为某一应用目的而特殊设计的程序组。在应用软件是指为某一应用目的而特殊设计的程序组。在 MRI 系统中,运行的应用软系统中,运行的应用软件就是磁共振成像的软件包。软件包中的模块通常有:病人信息管理、图像管理、扫描及件就是磁共振成像的软件包。软件包中的模块通常有:病人信息管理、图像管理、扫描及扫描控制扫描控

12、制 (应用软件的核心应用软件的核心 )、系统维护、网络管理、主控程序等。、系统维护、网络管理、主控程序等。3)应用软件的信息交换)应用软件的信息交换应用软件从用户那里直接得到需求信息,将用户的请求转变为控制数据发往测量、应用软件从用户那里直接得到需求信息,将用户的请求转变为控制数据发往测量、控制设备,获得测量数据,根据用户的需求输出图像。控制设备,获得测量数据,根据用户的需求输出图像。( 3)图像重建)图像重建图像的重建是一个极其复杂的信号处理过程,必须在复杂且严格的程序软件控制下图像的重建是一个极其复杂的信号处理过程,必须在复杂且严格的程序软件控制下进行。图像重建的本质是对原始数据的高速数学

13、运算(包括累加平均去噪声、相位校正、进行。图像重建的本质是对原始数据的高速数学运算(包括累加平均去噪声、相位校正、傅立叶变换等)傅立叶变换等) 。图像重建既可用软件完成也可用硬件完成,软件重建的速度要慢于硬件。图像重建既可用软件完成也可用硬件完成,软件重建的速度要慢于硬件。( 4)图像显示)图像显示图像重建结束后,得到的是表示图像各点不同亮度的一组数据,这些图像数据立即图像重建结束后,得到的是表示图像各点不同亮度的一组数据,这些图像数据立即被送入主计算机系统的海量存储器或硬盘中,并以图像的形式输出才能让人眼看到。最成被送入主计算机系统的海量存储器或硬盘中,并以图像的形式输出才能让人眼看到。最成

14、熟、最受欢迎的显示方法是电子视频显示系统,目前比较流行的是液晶显示器。图像的显熟、最受欢迎的显示方法是电子视频显示系统,目前比较流行的是液晶显示器。图像的显示不仅限于当前的病人,在会诊或进行回顾性研究时还需要调出以往病人的图像。示不仅限于当前的病人,在会诊或进行回顾性研究时还需要调出以往病人的图像。1.3 MRI 影像设备主要性能指标影像设备主要性能指标本节介绍了 MRI 影像设备的主要性能指标,包括主磁体、梯度磁场、射频线圈的主要性能指标。幻灯片 22(1)磁场强度磁共振设备磁场强度的大小就是指静磁场的场强数值大小,单位用特斯拉(Tesla,简称 T)或高斯(Gauss)来表示,1T=1 万

15、高斯。(2)磁场均匀度所谓磁场均匀度是指在特定容积(常取球形空间)限度内磁场的同一性程度,即穿过单位面积的磁感应线是否相同。幻灯片 23(3)磁场稳定度磁场的稳定度分时间稳定度和热稳定度两种。时间稳定度是指磁场随时间而变化的程度。磁场随时间变化会产生相位差,导致图像伪影。 热稳定度是指磁场值随环境温度变化而漂移的程度。永磁体和常导磁体的热稳定度较差,超导磁体的时间稳定度和热稳定度都能满足要求。(4)有效孔径有效孔径是指梯度线圈、匀场线圈、射频体线圈和内护板等部件均安装完毕后所得到的空间。全身 MRI 设备,磁体有效孔径须足以容纳人体为宜,一般来说,内径应大于 65 厘米。孔径较小可使病人产生幽

16、闭恐惧感。开放式磁体使病人躺在半敞开的检查床上,不会产生幽闭恐惧感,并能开展磁共振介入治疗项目。( 5)磁场的逸散度)磁场的逸散度强大的主磁体周围形成的逸散磁场,其逸散程度称为逸散度。它的危害是对附近的铁强大的主磁体周围形成的逸散磁场,其逸散程度称为逸散度。它的危害是对附近的铁磁性物体产生很强的吸引力,对人体健康、医疗仪器设备受到不同程度的损害、干扰和破磁性物体产生很强的吸引力,对人体健康、医疗仪器设备受到不同程度的损害、干扰和破坏。逸散程度的措施是对磁体采取各种有效的屏蔽。坏。逸散程度的措施是对磁体采取各种有效的屏蔽。梯度磁场的性能指标(1)有效容积(梯度场的均匀容积)有效容积是指线圈所包容

17、的、其梯度场能够满足一定线性要求的空间区域。(2)梯度场的线性梯度场的线性是衡量梯度场平稳度的指标。线性越好,表明梯度场越精确,图像的质量就越好。(3)梯度场的强度梯度场强度是指梯度场能够达到的最大值。与主磁场相比梯度磁场是相当微弱的。梯度场强度大,磁场梯度就可以更大些,可进行超薄层面的扫描。(4)梯度场变化率和梯度上升时间梯度场变化率是指单位时间内梯度场变化的程度,即最大梯度与上升时间的比率,亦称梯度切换率。梯度上升时间是指梯度场达到某一预定值所需的时间。梯度上升性能的提高,可开发更快速的成像序列.( 5)梯度场工作周期)梯度场工作周期梯度场工作周期是指在一个成像周期的时间内梯度场工作时间所

18、占的百分数。梯度场工作周期是指在一个成像周期的时间内梯度场工作时间所占的百分数。成像周期是指成像周期是指 MRI 设备采集一次数据所需的时间,即一个脉冲序列执行一遍所需的设备采集一次数据所需的时间,即一个脉冲序列执行一遍所需的时间。梯度场工作周期与成像层数有关,成像层数越多,梯度场的工作周期百分数越高。时间。梯度场工作周期与成像层数有关,成像层数越多,梯度场的工作周期百分数越高。2 MRI 检查的临床应用T1 和 T2: T1 和 T2 是组织在一定时间间隔内接受一系列脉冲后的物理变化特性,不同组织有不同的 T1 和 T2,它取决于组织内氢质子对磁场施加的射频脉冲的反应。TR 和 TE:TR

19、是重复时间即射频脉冲的间隔时间,TE 是回波时间即从施加射频脉冲到接受到信号问的时间,TR 和 TE 的单位均为毫秒(ms) 。可以做出分别代表组织 Tl 或 T2 特性的图像(T1 加权像或 T2 加权像);通过成像参数的设定也可以做出既有 Tl 特性又有 T2 特性的图像,称为质子密度加权像。 T1 加权像和 T2 加权像:观察图像的 TE 和 TR 值可区分,TE 短可为 20ms,长可为 80ms,TR 短可为600ms,长可为 3000ms。短 TE 短 TR 为 T1 加权像,而 TE、TR 均长的为 T2 加权像,短 TE 长 TR 者为质子密度加权像。 观察液体结构如脑室、膀胱

20、或脑脊液,若液体是亮的,很可能为 T2 加权像,若液体是暗的,则可能为 T1 加权像。磁共振成像检查常用的成像序列和检查方法: 磁共振图象是通过采用特定的成像序列扫描而获得的。目前,临床上最常用的是自旋回波序列(SE 序列) 。通过改变序列中的 TR(射频重复时间)和 TE(回波时间)两个参数,可分别获得质子密度 、T1 和 T2 的加权图像,三种不同成像参数的加权图像,各分别代表了组织的三种不同的磁共振特性,借以分辨正常组织并识别病变。 MRI 造影剂的种类及适应症: (一) 、种类: 1、顺磁性阳性造影剂。常用的有 Gd-DTPA(马根维显;磁显葡胺)等。其作用主要使 T1缩短,在 T1

21、加权像上呈高信号。 2、超顺磁性物质。常用的有纳米氧化铁颗粒(SPIO)等。其作用主要使 T2 缩短,在 T2 加权像上是低信号。 (二) 、适应症: 1、某些肿瘤的鉴别诊断。 2、确定血脑屏障是否被破坏。 3、提高病变的发现率。 对病人进行磁共振成像检查时:要避免带有含铁等顺磁性物质的物品,如手表、金属项链、假牙、金属钮扣、金属避孕环等进入检查室,因为这些带有顺磁性物质的物品,可使图像中产生大片的无信号伪影,不利于病灶的显示。带有心脏起搏器的病人,严禁做磁共振成像检查。对体内有金属弹片存留、术后有银夹残留,金属性内固定板、假关节等的病人,磁共振成像检查要持慎重态度,必需检查时要严密观察,病人

22、如有局部不适,应立即中止检查,防止弹片、银夹等在高磁场中移动,以致损伤邻近大血管和重要组织。 MRI 检查的禁忌症: 病人体内装有磁易感性物质或装置,这些结构的移动或功能丧失会引起不良后果。如: 1.心脏起搏器; 2.耳蜗移植体; 3.某些人工心脏瓣膜; 4.骨骼生长刺激器和神经刺激器(TENs) ; 5.动脉夹或圈; 6.金属结构(框周) ; 7.某些假体。 2.1 MRI 检查在脑和头颅疾病中应用 对脑肿瘤、脑炎性病变、脑白质病变、脑梗塞、脑先天性异常等的诊断比 CT 更为敏感,可发现早期病变,定位也更加准确。 对颅底及脑干的病变因无伪影可显示得更清楚。MRI 可不用造影剂显示脑血管,发现

23、有无动脉瘤和动静脉畸形。 MRI 还可直接显示一些颅神经,可发现发生在这些神经上的早期病变。对于中枢神经系统的先天性病变 MRI 是最好的影像学检查方法。MRI 检查在脊柱和脊髓中应用 MRI 没有骨骼伪影,显示脊髓、椎管效果特别好;MRI 的直接矢状位和冠状位成像,对于脊髓和椎管的整体显示有优势;MRI 可以多种成像方法同时使用,对于脊髓变性、肿瘤等病变的显示敏感。扫描平面一般为矢状面和横断面,必要时可以加做冠状面,层厚一般采用 45mm 或更薄。2.2 颈部检查 MRI 对眼耳鼻咽喉部的肿瘤性病变显示好,如鼻咽癌对颅底、颅神经的侵犯,MRI显示比 CT 更清晰更准确。 MRI 还可做颈部的

24、血管造影,显示血管异常。对颈部的肿块,MRI 也可显示其范围及其特征,以帮助定性。 2.3 胸部检查肺脏的 MRI 图像均呈黑色低信号,因此在显示肺内微细结构以及肺内病灶的细节等方面明显劣于 CT,故多不用于肺脏疾病的诊断。但 MRI 在显示纵隔和肺门的病变、胸壁的病变、臂丛神经病变以及肺动脉栓塞的诊断方面也具有较重要的价值。由于纵隔内血管的流空效应及脂肪的高信号特点,因此不必注射对比剂即可清晰显示纵隔内肿瘤的位置及与周围结构的关系或增大的淋巴结。2.4 腹部检查 MRI 检查已经成为肝脏局灶性病变最好的影像方法,明显提高了术前诊断的正确率,例如肝癌、肝血管瘤、转移瘤、结节状增生及肝腺瘤等均有

25、相应的 MRI 表现特征。 常规 MRI 检查并不适于胆道病变的诊断,目前主要是利用 MRCP(磁共振胰胆管成像)无创地显示肝内外胆管扩张以及梗阻的部位与形态,对胆道梗阻的良、恶性病变的鉴别诊断提供必要的证据。胆囊癌表现为正常胆囊形态消失,胆囊区出现肿块影,T1WI 呈低信号、T2WI 呈高信号,肿瘤常直接侵犯周围肝脏组织及肝门区域。A 为胆总管内多发结石呈低信号影; B 为肝门区胆管癌引起胆道高位梗阻。2.5 盆腔检查 MRI 可显示子宫、卵巢、膀胱、前列腺、精囊等器官的病变。可直接看到子宫内膜、肌层,对早期诊断子宫肿瘤性病变有很大的帮助。对卵巢、膀胱、前列腺等处病变的定位定性诊断也有很大价

26、值。 2.6 骨骼肌肉与关节检查 MRI 对关节内的软骨盘、肌腱、韧带的损伤,显示率比 CT 高。由于对骨髓的变化较敏感,能早期发现骨转移、骨髓炎、无菌性坏死、白血病骨髓浸润等。对骨肿瘤的软组织块显示清楚。对软组织损伤也有一定的诊断价值。MRI 优于 CT:1.没有电离辐射; 2.多方位成像(横断面、冠状面、矢状面和斜面) ; 3.解剖结构细节显示较好; 4.对组织结构的细微病理变化更敏感(如骨髓的浸润,脑水肿) ; 5.由信号强度可以确定组织的类型(如脂肪,血液和水) ; 6.组织对比优于 CT。 3 MRI 成像检查的优缺点磁共振成像术的主要不足:在于它扫描所需的时间较长,因而对一些不配合

27、的病人的检查常感困难,对运动性器官,例如胃肠道因缺乏合适的对比剂,常常显示不清楚;对于肺部,由于呼吸运动以及肺泡内氢质子密度很低等原因,成像效果也不满意。磁共振成像对钙化灶和骨骼病灶的显示,也不如 CT 准确和敏感。磁共振成像术的空间分辨力,也有待进一步提高。 4 MRI 影像设备新技术进展 一是向 0.5T 的低场 MRI 机型发展以适应中小医院的需求; 二是向 1.5T 双梯度和 3.0T 以上的高场 MRI 机型发展,以满足大型综合型医院的医疗、科研和教学的需要。 MRI 的进步集中反应在设备硬件发展基础上成像速度的提高以及成像方式的改进和扩展,成像速度从以前的每层以分钟计算到目前的每层以秒或亚秒计算,从而可以实现实时成像显示层面影像,甚至可以实现 3D、4D 等后处理影像及 MRI 透视等。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报