1、垂线教案 2教学目标1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念 ,用几何语言准确表达能力.2.了解垂直概念,能说出垂线的性质 “经过一点, 能画出已知直线的一条垂线 , 并且只能画出一条垂线“,会用三角尺或量角器过一点画一条直线的垂线.教学重点两条直线互相垂直的概念、性质和画法.教学过程一、创设问题情境,研究垂直等有关概念1.学生观察教室里的课桌面、黑板面相邻的两条边, 方格纸的横线和竖线,思考这些给大家什么印象?在学生回答之后,教师指出:“垂直“两个字对大家并不陌生 , 但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.2.教师出示相交线的模型
2、,演示模型, 学生观察思考:固定木条 a,转动木条, 当 b 的位置变化时,a、 b 所成的角 a 是如何变化的 ?其中会有特殊情况出现吗 ?当这种情况出现时,a、b 所成的四个角有什么特殊关系?教师在组织学生交流中,应学生明白:当 b 的位置变化时,角 a 从锐角变为钝角,其中a 是直角是特殊情况.其特殊之处还在于 :当a 是直角时, 它的邻补角, 对顶角都是直角,即 a、b所成的四个角都是直角,都相等 .3.师生共同给出垂直定义.师生分清“互相垂直“与“ 垂线“ 的区别与联系:“ 互相垂直“指两条直线的位置关系;“垂线“是指其中一条直线对另一条直线的命名。 如果说两条直线“互相垂直“时,其
3、中一条必定是另一条的“垂线“, 如果一条直线是另一条直线的“垂线“,则它们必定“互相垂直“。4.垂直的表示法.垂直用符号“ 来表示,结合课本图 5.1-5 说明“直线 AB 垂直于直线 CD, 垂足为 O“,则记为 ABCD,垂足为 O,并在图中任意一个角处作上直角记号,如图.5.简单应用(1)学生观察课本 P6 图 5.1-6 中的一些互相垂直的线条, 并再举出生活中其他实例.(2)判断以下两条直线是否垂直:两条直线相交所成的四个角中有一个是直角;两条直线相交所成的四个角相等;两条直线相交,有一组邻补角相等;两条直线相交,对顶角互补.二、画图实践,探究垂线的性质1.学生用三角尺或量角器画已知
4、直线 L 的垂线.(1)已知直线 L(教师在黑板上画一条直线 L),画出直线 L 的垂线.待学生上黑板画出 L 的垂线后,教师追问学生:还能画出 L 的垂线吗? 能画几条?通过师生交流, 使学生明确直线 L 的垂线有无数多条,即存在,但有不确定性.教师再问: 怎样才能确定直线 L 的垂线位置?在学生道出: 在直线 L 上取一点 A,过点 A 画 L 的垂线,并且动手画出图形.教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直.(2)经过直线 L 外一点 B 画直线 L 的垂线,这样的垂线能画出几条 ?从中你又得出什么结论?教师板书学生的结论:经过直线外一点有且只有一条直线与已知直
5、线垂直.教师让学生通过画图操作所得两条结论合并成一条, 并板书:垂线性质 1:过一点有且只有一条直线与已知直线垂直.2.变式训练,巩固垂线的概念和画法 ,如图根据下列语句画图 :(1)过点 P 画射线 MN 的垂线,Q 为垂足;(2)过点 P 画射线 BN 的垂线, 交射线 BN 反向延长线于 Q 点;(3)过点 P 画线段 AB 的垂线,交线 AB 延长线于 Q 点.学生 画完图后 ,教师归结:画一条射线或线段的垂线, 就是画它们所在直线的垂线.三、小结本节学习了互相垂直、垂线等概念, 还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗 ?四、作业1.课本 P7
6、练习,P9.3,4,5,9.2.选用课时作业设计.一、判断题.1.两条直线互相垂直,则所有的邻补角都相等 .( )2.一条直线不可能与两条相交直线都垂直.( )3.两条直线相交所成的四个角中,如果有三个角相等, 那么这两条直线互为垂直 .( )二、填空题.1.如图 1,OAOB,ODOC,O 为垂足,若AOC=35, 则BOD=_.2.如图 2,AOBO,O为垂足 ,直线 CD 过点 O,且BOD=2AOC, 则BOD=_.3.如图 3,直线 AB、CD 相交于点 O,若EOD=40,BOC=130, 那么射线 OE 与直线AB 的位置关系是_.三、解答题.1.已知钝角AOB,点 D 在射线
7、OB 上.(1)画直线 DEOB;(2)画直线 DFOA,垂足为 F.2.已知:如图,直线 AB,垂线 OC 交于点 O,OD 平分BOC,OE 平分AOC.试判断 OD 与OE 的位置关系.3.你能用折纸方法过一点作已知直线的垂线吗?作业答案:一、1. 2. 3. 二、1.145 2.60 3. 互相垂直 三、1.略 2.互相垂直 3.可以. 将已知直线折叠使折线过这个已知点,那么这条折线是已知直线的垂线,因为折线把平角分成两个相等的角 ,所以每个角为 90.5.1.2 垂线(第 2 课时)垂线(二)教学目标1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念 ,用几何语言准确
8、表达能力。2.了解垂线段的概念,了解垂线段最短的性质 ,体会点到直线的距离的意义 , 并会度量点到直线的距离.重点、难点重点:“垂线段最短“ 的性质, 点到直线的距离的概念及其简单应用 .难点:对点到直线的距离的概念的理解.教学过程一、创设问题情境,探究垂线段最短的垂线性质1.教师展示课本图 5.1-8,提出问题:要把河中的水引到农田 P 处, 如何挖渠能使渠道最短?学生 看图、思考 .2.教师以问题串形式,启发 学生思考.(1)问题 1,上学期我们曾经学过什么最短的知识,还记得吗 ?学生 说出: 两点间线段最短.(2)问题 2,如果把渠道看成是线段,它的一个端点自然是 P,那么另一个端点的位置呢?把江河看成直线 L,那么原问题就是怎么的 数学