1、基因工程表达系统和蛋白质工程,中国药科大学生物制药教研室,一、 外源基因在大肠杆菌中的表达,1. 大肠杆菌作为表达外源基因受体菌的特征 a 大肠杆菌表达外源基因的优势 全基因组测序,共有4405个开放型阅读框架 基因克隆表达系统成熟完善 繁殖迅速、培养简单、操作方便、遗传稳定 被美国FDA批准为安全的基因工程受体生物,b大肠杆菌表达外源基因的劣势 缺乏对真核生物蛋白质的复性功能 缺乏对真核生物蛋白质的修饰加工系统 内源性蛋白酶降解空间构象不正确的异源蛋白 细胞周质内含有种类繁多的内毒素,外源基因在大肠杆菌中高效表达的原理 启动子 终止子 核糖体结合位点 密码子 质粒拷贝数,转录,翻译,P ta
2、c = 3 P trp = 11 P lac,启动子,转录调控机理 具有多顺反子结构,基因排列次序为: 启动子(lacP)- 操纵基因(lacO) - 结构基因(lacZ-lacY-lacA) 正调节因子 CAP 负调节因子 lac I,启动子,Lac 表达系统 以大肠杆菌 lac 操纵子调控机理为基础设计、构建的表达系统,lacI Plac lacO lacZ lacY lacA,lacI Plac lacO lacZ lacY lacA,Lac 表达系统 正调节因子 CAP cAMP激活CAP,CAPcAMP复合物与 lac 操纵子上专一位点结合 后,能促进 RNA 聚合酶与 35、10
3、序列的结合,进而促进 Plac 介导的转录。,基因工程中使用的 lac 启动子均为抗葡萄糖代谢阻遏的突变型,即 Plac UV5,Lac 表达系统 lac UV5 突变体 Plac UV5 突变体能够在没有 CAP 存在的情形下非常有效的起始 转录,受它控制的基因在转录水平上只受 lacI 的调控,因此用它 构建的表达载体在使用时比野生型 Plac 更易操作。,Lac 表达系统 负调节因子 lac I 在无诱导物情形下, lacI 基因产物形成四聚体阻遏蛋白,与启动 子下游的操纵基因紧密结合,阻止转录的起始。,lacI Plac lacO lacZ lacY lacA,lacI Plac la
4、cO lacZ lacY lacA,Tac 表达系统 tac 启动子是由 trp 的 35 序列和 lacUV5 的 10 序列拼接而成的杂 合启动子。 调控模式与 lacUV5 相似,但 mRNA 转录水平更高于 trp 和 lacUV5 启动子(P tac = 3 P trp = 11 P lac),因此在要求有较高基因表达 水平的情况下,选用 tac 启动子比用 lacUV5 启动子更优越。,lac、tac 启动子对宿主菌的要求 在普通大肠杆菌中, LacI 阻遏蛋白仅能满足细胞染色体上 lac 操纵子 转录调控的需要。 当多拷贝的 lacO 随着带有 lacUV5、tac 启动子的表达
5、质粒转化进入 大肠杆菌后,LacI 阻遏蛋白与 lacO 的比例显著下降,无法保证每一 个 lacO 都能获得足够的 LacI 阻遏蛋白参与转录调控。表现为在无诱 导物存在的情形下, lacUV5、tac 启动子有较高的本底转录。,lac、tac 启动子对宿主菌的要求 为了使以 Lac、Tac 表达系统具有严紧调控外源基因转录的能力,一 种能产生过量的 LacI 阻遏蛋白的 lacI 基因的突变体 lacIq 被应用于表 达系统。 大肠杆菌 JM109 等菌株的基因型均为 lacIq ,常被选用为 Lac、Tac 表达系统的宿主菌。 但是这些菌株也只能对低拷贝的表达载体实现严紧调控,在使用高拷
6、 贝复制子构建表达载体时,仍能观察到较高水平的本底转录。 需在表达载体中插入 lacIq 基因以保证有较多的 LacI 阻遏蛋白产生。,lac、tac 表达系统存在的问题 IPTG 用于诱导 lac、tac 启动子的转录,但由于 IPTG 本身具有一定的 毒性。从安全角度,对表达和制备用于医疗目的的重组蛋白并不适合。 一些国家规定在生产人用重组蛋白质的生产工艺中不能使用 IPTG 解决方法 lac 和 tac 启动子的转录受温度严紧调控 乳糖替代 IPTG 诱导 lac 和 tac 启动子的转录,lac、tac 表达系统存在的问题 lac 和 tac 启动子的转录受温度严紧调控 把阻遏蛋白 L
7、acI 的温度敏感突变体lacI(ts)、lacIq(ts)插入表达载体或 整合到染色体后,均能使 lac 和 tac 启动子的转录受到温度严紧调控 在较低温度(30)时抑制,在较高温度(42)时开放。 用乳糖替代 IPTG 诱导 lac 和 tac 启动子的转录 乳糖在 b-半乳糖苷酶作用下生成异乳糖,异乳糖具有诱导剂的作用 这一过程涉及乳糖的转运和转化,其效率受到多种因素的影响和制约 因此乳糖诱导的有效剂量大大高于IPTG。 乳糖本身作为一种碳源可以被大肠杆菌代谢利用,较多的乳糖存在也 会导致菌体生理及生长特性变化。乳糖替代 lPTG 作为诱导剂的研究 要与发酵工艺结合起来,才能显示其良好
8、的前景。,转录调控机理 色氨酸启动子 Ptrp 受色氨酸-阻遏蛋白复合物的阻遏,转录呈基底 状态。 在培养系统中去除色氨酸或者加入3-吲哚丙烯酸(IAA), 便可有 效地解除阻遏抑制作用。 在正常的细菌培养体系中,除去色氨酸是困难的,因此基因工程中 往往添加 IAA 诱导 Ptrp 介导的目的基因表达,启动子,Trp 表达系统 以大肠杆菌 trp 操纵子调控机理为基础设计、构建的表达系统,Trp 表达系统,PL 和 PR 表达系统 以 l 噬菌体早期转录启动子 PL 、 PR 为核心构建的表达系统 在野生型 l 噬菌体中, PL 、 PR 启动子转录与否决定了 l 噬菌体进入 裂解循环还是溶源
9、循环。,启动子,PL 和 PR 表达系统 转录调控的机理 由 l 噬菌体 PE 启动子控制的 cI 基因的产物是 PL 、 PR 启动子转录的 阻遏物。cI 基因的产物在大肠杆菌宿主中的浓度取决于一系列宿主与 噬菌体因子之间的错综复杂的平衡关系。由于通过细胞因子来控制cI 基因产物的产生和消失是相当困难的。 因此 PL 、 PR 表达系统都选用温度敏感突变体 cI 857(ts) 的基因产物 来调控 PL 、 PR 启动子的转录。 在较低温度(30)时以活性形式存在 在较高温度(42)时失活脱落,PL 和 PR 表达系统 宿主菌中没有 cI 基因产物,PL、PR 启动子的高强度直接转录,带有P
10、L 或 PR 启动子的表达载体在普通大肠杆菌中相当不稳定。 对宿主菌的要求 用溶源化 l 噬菌体的大肠杆菌作 PL、PR 启动子表达载体的宿主菌 N4830-1,POP2136 等菌株已经溶源化 cI 857(ts) l 噬菌体, 可用作表达外源基因时的宿主菌。 把 cI 857(ts) 基因组装在表达载体上 宿主菌选择范围更大,PL 和 PR 表达系统存在的问题 由于 PL 和 PR 表达系统诱导时不加化学诱导剂,成本又低廉,最初几 个在大肠杆菌中制备的药用重组蛋白质都采用 PL 或 PR 表达系统。 缺陷 在热脉冲诱导过程中,大肠杆菌热休克蛋白的表达也会被激活,其 中一些是蛋白水解酶,有可
11、能降解所表达的重组蛋白。 在大体积发酵培养菌体时,通过热平衡交换方式把培养温度从30 提高到 42 需要较长的时间,这种缓慢的升温方式影响诱导效 果,对重组蛋白表达量有一定的影响。,T7 表达系统 大肠杆菌 T7 噬菌体具有一套专一性非常强的转录体系,利用这一体系中的元件为基础构建的表达系统称为 T7 表达系统。 T7 噬菌体基因 1 编码的 T7 RNA 聚合酶选择性的激活 T7 噬菌体启动子的转录。 T7 RNA 聚合酶活性高,其合成 RNA 的速度比大肠杆菌 RNA 聚合酶快 5倍左右。并可以转录某些不能被大肠杆菌 RNA聚合酶有效转录的序列。 在细胞中存在 T7 RNA聚合酶和 T7噬
12、茵体启动子的情形下,大肠杆菌宿主本身基因的转录竞争不过 T7 噬菌体转录体系,最终受 T7噬菌体启动子控制的基因的转录达到很高的水平。,T7 表达系统 转录调控的机理 T7 噬菌体启动子的转录完全依赖于 T7 RNA 聚合酶,因此 T7 RNA 聚合酶的转录调控模式就决定了表达系统的调控方式。 化学诱导型 温度诱导型 双质粒系统,化学诱导型 噬菌体 DE3 是 l 噬菌体的衍生 株,一段含有 lacI、lacUV5 启 动子和 T7 RNA 聚合酶基因的 DNA 片段被插入其 int 基因中 用噬菌体 DE3 的溶源菌作为表 达载体的宿主菌,调控方式为 化学诱导型,类似于 Lac 表达 系统。
13、,T7 RNA 聚合酶基因,lac 启动子,E.Coli (DE3),IPTG诱导,温度诱导型 PL 启动子控制 T7 RNA 聚合 酶基因,通过热诱导方式激发 T7 噬菌体启动子的转录。 这种方式可以使本底转录降到 很低的水平,尤其适用于表达 对大肠杆菌宿主有毒性的重组 蛋白质。,T7 RNA 聚合酶基因,PL 启动子,E.Coli (CE6),热诱导,cI857,双质粒系统 一个质粒带有 T7 RNA 聚合酶 基因,另一个质粒带有 T7 启 动子和目的基因 两个质粒的复制子和抗性标记 不能相同 调控方式为控制 T7 RNA 聚合 酶的启动子调控类型,热诱导,T7 表达系统存在的问题 T7
14、表达系统表达目的基因的水平是目前所有表达系统中最高的,但 也不可避免出现在相对较高的本底转录,如果目的基因产物对大肠杆 菌宿主有毒性,会影响细胞的生长。 解决办法之一 在表达系统中低水平表达 T7 溶菌酶基因。 因为 T7 溶菌酶除了作用于大肠杆菌细胞壁上肽聚糖外,还能与 T7 RNA 聚合酶结合抑制其转录的活性。 目前 T7 溶菌酶基因都通过共转化质拉导入表达系统,它能明显 降低本底转录,但对诱导后目的基因的表达水平无明显影响。,强化转录终止的必要性 外源基因在强启动子的控制下表达,容易发生转录过头现象,即 RNA 聚合酶滑过终止子结构继续转录质粒上邻近的 DNA 序列,形成长短不一的 mR
15、NA 混合物过长转录物的产生在很大程度上会影响外源基因的表达,其原因如下: 转录产物越长,RNA聚合酶转录一分子 mRNA 所需的时间就相应增加,外源基 因本身的转录效率下降; 如果外源基因下游紧接有载体上的其它重要基因或 DNA功能区域,如选择性标 记基因和复制子结构等,则 RNA聚合酶在此处的转录可能干扰质粒的复制及其 它生物功能,甚至导致重组质粒的不稳定性; 过长的 mRNA 往往会产生大量无用的蛋白质,增加工程菌无谓的能量消耗; 更为严重的是,过长的转录物往往不能形成理想的二级结构, 从而大大降低外 源基因编码产物的翻译效率,终止子,强终止子的选择与使用 目前外源基因表达质粒中常用的终
16、止子是来自大肠杆菌 rRNA 操纵子上 的 rrnT1T2 以及 T7 噬菌体 DNA 上的 Tf。 对于一些终止作用较弱的终止子,通常可以采用二聚体终止子串联的特 殊结构,以增强其转录终止作用,外源基因在大肠杆菌细胞中的高效表达不仅取决于转录启动的频 率,而且在很大程度上还与 mRNA 的翻译起始效率密切相关。 大肠杆菌细胞中结构不同的 mRNA分子具有不同的翻译效率,它们之间的差别有时可高达数百倍。 mRNA 翻译的起始效率主要由其 5 端的结构序列所决定,称为核糖体结合位点(RBS),核糖体结合位点,大肠杆菌核糖体结合位点包括下列四个特征结构要素: 位于翻译起始密码子上游的 68 个核苷
17、酸序列 5 UAAGGAGG 3 即Shine-Dalgarno(SD)序列,它通过识别大肠杆菌核糖体小亚 基中的 16S rRNA 3 端区域 3 AUUCCUCC 5 并与之专一性结合 将mRNA 定位于核糖体上,从而启动翻译; 翻译起始密码子,大肠杆菌绝大部分基因以 AUG作为阅读框架的 起始位点,有些基因也使用 GUG 或 UUG 作为翻译起始密码子 SD 序列与翻译起始密码子之间的距离及碱基组成 基因编码区 5 端若干密码子的碱基序列,核糖体结合位点对外源基因表达的影响 SD 序列的影响 一般来说,mRNA 与核糖体的结合程度越强,翻译的起始效率就 越高,而这种结合程度主要取决于 S
18、D ( UAAGGAGG)序列与 16S rRNA 的碱基互补性,其中以 GGAG 四个碱基序列尤为重要。 对多数基因而言,上述四个碱基中任何一个换成 C 或 T,均会导 致翻译效率大幅度降低,SD 序列与起始密码子之间的序列的影响 SD 序列下游的碱基若为 AAAA 或 UUUU,翻译效率最高;而 CCCC 或 GGGG 的翻译效率则分别是最高值的 50% 和 25%。 紧邻 AUG 的前三个碱基成份对翻译起始也有影响。 对于大肠杆菌 b-半乳糖苷酶的 mRNA 而言,在这个位置上最佳 的碱基组合是 UAU 或 CUU,如果用 UUC、UCA 或 AGG 取代 之,则酶的表达水平低 20 倍
19、,SD 序列与起始密码子之间的距离的影响 SD 序列与起始密码子 AUG 之间的精确距离保证了 mRNA 在 核糖体上定位后,翻译起始密码子 AUG 正好处于核糖体复合物 结构中的 P 位,这是翻译启动的前提条件。 在很多情况下,SD 序列位于 AUG 之前大约七个碱基处,在此 间隔中少一个碱基或多一个碱基, 均会导致翻译起始效率不同 程度的降低,起始密码子及其后续若干密码子的影响 大肠杆菌中的起始 tRNA 分子可以同时识别 AUG、GUG 和 UUG 三种起始密码子,但其识别频率并不相同,通常 GUG 为 AUG 的 50%,而 UUG 只及 AUG 的 25%。 除此之外,从 AUG 开
20、始的前几个密码子碱基序列也至关重要,至 少这一序列不能与 mRNA 的 5 端非编码区形成茎环结构,否则便 会严重干扰 mRNA 在核糖体上的准确定位 目前广泛用于外源基因表达的大肠杆菌表达型质粒上,均含有与 启动子来源相同的核糖体结合位点序列,序列和间隔是最佳的。,不同的生物,甚至同种生物不同的蛋白质编码基因,对简并密码子使用频率并不相同,具有一定的偏爱性,其决定因素是:生物基因组中的碱基含量 在富含 AT 的生物(如单链 DNA噬菌体X174)基因组中,密码子 第三位上的 U 和 A 出现的频率较高; 在 GC 丰富的生物(如链霉菌)基因组中,第三位上含有 G 或 C 的 简并密码子占 9
21、0% 以上的绝对优势密码子与反密码子相互作用的自由能 性中等强度规律 如GGG、CCC、GCG、GGC、AAA、UUU、AUA、UAU 等使用少 如GUG、CAC、UCG、AGC、ACA、UGU、AUC、UUG 等使用多细胞内 tRNA 的含量,密码子,生物体对密码子的偏爱性,密码子偏爱性对外源基因表达的影响 由于原核生物和真核生物基因组中密码子的使用频率具有较大程大的差异性,因此外源基因尤其是高等哺乳动物基因在大肠杆菌中高效翻译的一个重要因素是密码子的正确选择。 一般而言,有两种策略可以使外源基因上的密码子在大肠杆菌细胞中获得最佳表达: 外源基因全合成 同步表达相关 tRNA 编码基因,质粒
22、拷贝数,质粒拷贝数对细菌生长代谢的影响 目前实验室里广泛使用的表达型质粒在每个大肠杆菌细胞中可达数百甚至上千个拷贝,质粒的扩增过程通常发生在受体细胞的对数生长期内,而此时正是细菌生理代谢最旺盛的阶段。质粒分子的过度增殖以及其后目的基因的高效表达势必会影响受体细胞的生长代谢,进而导致重组质粒的不稳定性以及目的基因宏观表达水平的下降 解决上述难题的一种有效策略是将重组质粒的扩增纳入可控制的轨道,胞内表达和胞外表达,蛋白质的合成是在细胞之中进行的 目标蛋白在细胞质中表达的主要优点是: 表达质粒的构建比较简单; 能够达到很高的目标蛋白表达量,一般可以达到占细胞总蛋白的 20%40%。 目标蛋白在大肠杆
23、菌系统表达的形式有二种: 在细胞内表现为不溶性的包涵体颗粒 包涵体存在于大肠杆菌细胞质中 在细胞内表现为可溶性的蛋白质 可溶性的目标蛋白质除可存在于细胞质中外,还可借助于本身的 功能序列和大肠杆菌蛋白质加工、运输体系,最终分泌到周质空 间,或外泌到培养液中。,大肠杆菌基因工程菌的构建策略 包涵体型异源蛋白的表达 分泌型异源蛋白的表达 融合型异源蛋白的表达 寡聚型异源蛋白的表达 整合型异源蛋白的表达 蛋白酶抗性或缺陷型表达系统的构建,包涵体及其性质 在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不溶性的结构称为包涵体(Inclu
24、sion Bodies,IB)。 富含蛋白质的包涵体多见于生长在含有氨基酸类似物培养基的大肠杆菌细胞中,由这些氨基酸类似物所合成的蛋白质往往会丧失其理化特性和生物功能,从而集聚形成包涵体。 由高效表达质粒构建的大肠杆菌工程菌大量合成非天然性的同源或异源蛋白质,后者在一般情况下也以包涵体的形式存在于细菌细胞内。 除此之外,包涵体中还含有少量的DNA、RNA和脂多糖等非蛋白分子,包涵体型异源蛋白的表达,以包涵体形式表达目的蛋白的优缺点 优点 在一定程度上保持表达产物的结构稳定 能够避免细胞内蛋白水解酶的作用,有利于目标蛋白的富集 简化外源基因表达产物的分离操作 包涵体的水难溶性及其密度远大于其它细
25、胞碎片和细胞成分,菌 体经超声波裂解后,直接通过高速离心即可将重组异源蛋白从细 菌裂解物中分离出来 能够表达对大肠杆菌宿主有毒或有致死效应的目标蛋白。,缺点 以包涵体形式表达的重组蛋白丧失了原有的生物活性,必须通过 有效的变性复性操作,才能回收得到具有正确空间构象(因而具 有生物活性)的目标蛋白,因此包涵体变复性操作的效率对目标 产物的收率至关重要。 经过复性处理的目标蛋白不一定能完全恢复原来的生物学活性, 有时甚至完全得不到有活性的蛋白蛋,尤其当目标蛋白分子中的 Cys残基数目较高时,体外复性蛋白质的成功率相当低, 一般不 超过 30% 复性处理工艺可使目标蛋白的制备成本上升。,包涵体的变性
26、与复性操作 包涵体的溶解与变性 包涵体的溶解与变性的主要任务是拆开错配的二硫键和次级键。在 人工条件下,使包涵体溶解并重新进入复性途径中。 能有效促进包涵体溶解变性的试剂和条件包括: 清 洗 剂 SDS、正十二醇肌氨酸,廉价, 但影响复性和纯化 促 溶 剂 盐酸胍、尿素,前者昂贵,尿素便宜, 但常被自发形成的氰酸盐污染, 后者能与多肽链中的氨基反应 混合溶剂 如尿素与醋酸、二甲基砜等联合使用, 溶解力增强 极 端 pH 廉价,但许多蛋白质在极端pH条件下发生修饰反应包涵体的复性与重折叠(refolding) 包涵体的复性与重折叠的主要任务: 将多肽链中被拆开的游离巯基重新折叠 通过次级键的形成
27、使蛋白质复性,在细胞内表现为可溶性的蛋白质 目标蛋白以可溶性蛋白质形式表达虽然可以避免包涵体复性带来的问题,但是也有一定的缺陷,主要表现为大肠杆菌本身存在于细胞质中的蛋白质往往只含有少量的,甚至没有半胱氨酸残基。富含半胱氨酸残基,需要形成二硫键的蛋白质大部份被转运到细胞的其他部位。,分泌型异源蛋白的表达,这是因为大肠杆菌细胞质微环境的氧化还原态势不利于蛋白质二硫键的形成,而且缺少一种形成二硫键所必须的体系。一些需要通过二硫键的形成来维持其构象的目标蛋白在大肠杆菌的细胞质中往往不能正确折叠。 解决这一问题的途径之一是用大肠杆菌氧硫还蛋白还原酶基因 trxB 缺陷株作为宿主菌表达目标蛋白。研究表明
28、trxB 缺陷株细胞质的氧化还原态势发生了变化,蛋白质在 trxB 缺陷株的细胞质中能够形成二硫键。这一菌株对于表达结构复杂的蛋白质而言是一个相当重要的工具。,在细胞质中直接表达不带有前导序列的成熟蛋白质 在细胞质中直接表达不带有前导序列的成熟蛋白质需要起始密码,通常为编码甲硫氨酸的 ATG。 在多数情况下,N 端附加的甲硫氨酸对蛋白质的性质没有特别的影响,但是也有附加的甲硫氨酸严重影响蛋白质生物学活力的报道。 另外,附加的甲硫氨酸也可能改变蛋白质的免疫性质和药理性质。从制备用于医疗目的的蛋白质的角度来看,这是一个需要引起重视的问题。,去除附加的甲硫氨酸有二种方法: 在表达系统中共表达甲硫氨酸
29、氨肽酶基因。 在分离纯化后在体外用外肽酶处理。 但它们都对与甲硫氨酸相邻的氨基酸残基类型有一定要求,因此在使用上有一定的限制。,目标蛋白与有亲合配基的序列融合表达 与纯化包涵体相比,细胞质中以可溶性形式表达蛋白质的分离纯化过程比较复杂,一般要通过亲合层析才能达到比较高的纯度。 目标蛋白与有亲合配基的序列融合表达既可以提高分离纯化的效率,又能在融合蛋白切离的过程中得到没有附加甲硫氨酸目标蛋白。 金黄色葡萄球菌蛋白G、A和衍生物Z,日本血吸虫谷胱甘肽-S-转移酶,大肠杆菌麦芽糖结合蛋白,His-tag 等是目前常用的与目标基因融合表达的序列。,目标蛋白在周质空间中表达目标蛋白在周质空间中表达的优点
30、 大肠杆菌周质空间中自身蛋白质的数量约为 100 种,只占菌体总蛋白数量的4%。蛋白水解酶的含量与在细胞质中相比也少得多,因此目标蛋白在周质空间中表达有利于分离纯化和减少蛋白水解酶的降解。 目标蛋白从细胞质转运到周质空间过程中信号肽被加工切除,有效地避免了N 端附加的甲硫氨酸的产生。 周质空间中呈氧化型的氧化还原态势使目标蛋白能够较好折叠,维持正确的构象。,目标蛋白外泌表达 把所表达的目标蛋白外泌到细胞外的培养基中可以进一步减少蛋白水解酶的降解,也有利于分离纯化。 目前成功的例子主要是采用以下方案: (1)与大肠杆菌本身的外泌蛋白基因融合表达 (2)与一些能提高细胞外膜通透性的因子融合或共表达
31、 (3)改变培养基的成分 归纳现有的研究结果显示这些方法仅对外泌分子量较小的蛋白有效,而且外泌效率一般都比较低。,高效表达目标基因的战略和技术,1 选择强启动子组建表达载体2 适当增加表达质粒的拷贝数以增加基因剂量3 使用大肠杆菌偏爱的密码子,同事优化SD序列与AUG之间的距离4 采用蛋白酶缺失的宿主菌,尽可能降低表达产物的降解5 采用诱导表达,共表达大肠杆菌稀有密码子 tRNA 基因 表达水平高的基因呈现的密码子偏爱性高于表达水平低的基因。 现已阐明的在大肠杆菌中的稀有密码子有: 编码 Arg 的密码子 AGA、AGG、CGA、CGG 编码 Pro 的密码子 CCC、CCU、CCA 编码 C
32、ys 的密码子 UGU、UGC; 编码 Gly 的密码子 GGA、GGG 编码 Leu 的密码子 CUA、CUC 编码 Ile 的密码子 AUA 编码 Ser 的密码子 UCA、AUG、UCG、UCC 编码 Thr 的密码子 ACA,共表达大肠杆菌稀有密码子 tRNA 基因 由于同义密码子的使用频率与细胞内对应的 tRNA 的丰度有正比关系稀有密码子对应的 tRNA 的丰度很低,有可能在翻译过程中发生中止和移码突变。 解决这一问题的办法: 通过基因突变把稀有密码子改变为其他使用频率高的同义密码子。 在表达系统中共表达稀有密码子 tRNA 基因,以提高大肠杆菌细胞 内稀有密码子 tRNA 的丰度
33、,在所有的大肠杆菌稀有密码子 tRNA 中,tRNA Arg (AGG/AGA) 含量最少,而 AGG 和 AGA 密码子在真核基因中经常出现。 人尿激酶原 ProUK,新型组织纤溶酶原激活剂 NTA 等基因中都含有较多的 AGG 和 AGA 密码子, 在大肠杆菌中直接表达的水平很低,但在大肠杆菌中共表达 tRNA Arg(AGG/AGA) 基因 argU 后, 这些基因的表达水平能明显得到提高。 现在还没有一个固定规则来判定稀有密码子的存在是否确实会对翻译过程产生明显的不利影响。因为稀有密码子存在的位置、分布的均匀性、mRNA 的二级结构的不同决定了它对翻译过程的影响是有差别的。所有的结论要
34、通过实验才能得出。,二、酵母表达系统,甲醇酵母表达系统,酿酒酵母表达系统,(一) 酿酒酵母表达系统,酿酒酵母分泌系统,酿酒酵母系统启动子,酿酒酵母表达系统存在的问题,酿酒酵母糖基化系统,1、酿酒酵母启动子,UAS,URS,TATA,起始位点,编码序列,mRNA,40-120bp,20-40bp,100-1400bp,1、转录起始位点; 4、URS:上游阻遏序列2、TATA盒:富含AT; 5、DAS:下游激活序列3、UAS:上游激活序列;,DAS,1)糖酵解途径中关键酶的强启动子,受葡萄糖诱导: 甘油醛-3-磷酸脱氢酶基因GAPDH 磷酸甘油激酶基因PKG 乙醇脱氢酶基因ADH,酿酒酵母表达系统
35、常用启动子,2)半乳糖激酶启动子(GAL1),GAL1,GAL7,GAL10,UAS,GAL4,GAL80,A、 GAL1、GAL7和 GAL10基因连锁在一起,独立转录,共同调控B、GAL4产物与UAS结合,促进转录;GAL80产物抑制GAL4产物的活性,阻遏转录C、野生型GAL4表达水平低,产物活性可被GLAL80产物完全抑制,半乳糖诱导效果差,半乳糖诱导、葡萄糖抑制,GAL1,GAL7,GAL10,UAS,GAL4,GAL80,A、 将GAL4的启动子换成GAL10的诱导型强启动子B、半乳糖诱导GAL4高表达,不受GAL80产物抑制,激活GAL1等高效转录,半乳糖诱导、葡萄糖抑制,Pro
36、moter,GAL10,3)pho4TS-PHO5启动子,A、PHO5启动子在培养基缺磷酸盐时启动转录B、PHO4基因编码产物是PHO5启动子的正调控因子C、pho4TS 温度敏感,35时失活,PHO5关闭D、pho4TS-PHO5启动子通过降温(23)诱导表达,低温诱导、磷酸盐抑制,酿酒酵母系统常用分泌信号肽来源: 性结合因子:MF- 酸性磷酸酯酶:PHO5 蔗糖酶:SUC2 杀手毒素因子:KIL,2、酿酒酵母分泌系统,*保守性低,大多异源宿主系统的信号肽不能互用*信号肽结构:,酿酒酵母信号肽特点,正电荷区,疏水区,极性区,Met,目的蛋白,信号肽剪切位点,*分泌效率高*在酵母系统具有通用性
37、*88个残基组成,MF-信号肽,Met,目的蛋白,-Lys-Arg-Glu-Ala-Glu-Ala-,KEX2,DAP,DAP,DAP:STE13编码的二肽酶,糖基化位点:Asn-X-Thr/Ser(X代表任何氨基酸) N-型糖基化:天门冬酰氨酸残基上的酰胺氮进行糖基化,对蛋白质的折叠、稳定性及活性较重要。 O-型糖基化:苏氨酸/丝氨酸上的羟基氧进行糖基化,3、酿酒酵母糖基化系统,* 过糖基化(超糖基化修饰): N型或O型糖基的外链进一步形成庞大的、由甘露糖组成的、复杂分支结构的现象。增加了免疫原性、对活性与药代稳定性均有影响。*糖链组成 O型糖链仅由甘露糖组成、而哺乳细胞的还含唾液酸基团,酿
38、酒酵母糖基化特点,1)表达水平普遍不高 A、表达载体传代不稳定(YEp、YRp) B、所采用的强启动子调控不严谨 C、不能利用简单的无机培养基进行高密度发酵2)分泌表达产物过糖基化,4、酿酒酵母表达系统的缺陷,(二) 甲醇酵母表达系统,甲醇酵母与甲醇氧化酶启动子,甲醇酵母表达系统的应用,甲醇酵母表达系统操作原理,甲醇酵母系统高效表达影响因素与对策,甲醇酵母表达系统的优缺点,1、甲醇酵母与甲醇氧化酶启动子,甲醇酵母(methylotrophic yeast) 指可利用甲醇作单一碳源的一类酵母。 毕赤酵母(Pichia pastoris) 汉森酵母(Hansenula ploymorpha) 假丝酵母(Candia boidinii),