分享
分享赚钱 收藏 举报 版权申诉 / 5

类型中职应用数学复数的概念说课稿.doc

  • 上传人:hyngb9260
  • 文档编号:7720027
  • 上传时间:2019-05-24
  • 格式:DOC
  • 页数:5
  • 大小:39KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    中职应用数学复数的概念说课稿.doc
    资源描述:

    1、1复数的概念说课稿一、 教材分析:(一) 地位与作用复数的概念是复数的第一课时,在实数的基础上,进一步研究 X2 =-1,而得到复数系。它不仅对数学本身的发展有着极为重要的意义,而且大证明机翼上升力的基本定理和解决堤坝渗水问题中起到了重要作用,也为建立巨大水电站提供了重要理论依据,是机电专业人才必备的基础知识之一。复数的概念与代数运算是本章的基础知识,也是电学上某些应用的必备知识,为与电学中的记法保持致,本课题将用“j”表示虚数单位。(二) 教学目标1、 知识要求(1) 了解引入复数的必要性,理解复数的有关概念,使学生初步体会了 j2=-1 合理性(2) 使学生初步步体会 j2=-1 的合理性

    2、(3) 使学生会对复数进行简单的分类2、 能力要求在培养学生类比,转化的数学思想方法的过程中,提高学生学习的能力。3、 育人因素培养学生科学探索精神和辨证唯物主义思想。(三) 教学重、难点21、 重点:复数有关概念2、 难点对 j 和和复数定义的理解二、 学生分析由于复数是从实数的基础上进一步扩充数系,因此,学生对学习复数的概念存在着不同于实数概念的差异。学生在教师的引导下能基本掌握本节知识。本班学生层次为机电专业班,基础较差,所以讲解过程不宜较多展开,要简明扼要地掌握复数的概念,特别是 j 的规定。三、 教学法(一) 教法目标教学法,讨论法; 学法:归纳讨论练习(二) 教学手段多媒体电脑与投

    3、影机四、 教学教程(一) 引人部分1、 教师引人内容:因生产和科学发展的需要数集在逐步扩充,数集的每一次扩充,对数学学科本身来说。也解决了在原有数集中某种运算不是永远可以实施的矛盾。分数解决了在整数中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾,但是,数集扩到实数的平方等于-1。由于解方程的需要,人们引人了一个新数 j,叫作虚数单位,并由此产生的复数。3由意大利数学家卡当在十六世纪首次引人,经过达朗贝尔,棣莫弗,欧拉,高斯等人的工作,此概念逐渐为数学家所接受。复数有多种表示方法,诸如向量表示,三角表示,指数表示等,它满足四则运算等性质。它是复变涵数论,解析

    4、数论,傅里叶分析、分形,流体力学,相对论,量子力学等学科中最基础的对象和工具。2、 学生对此部分内容在了解的基础上要能够产生学习复数的兴趣和好奇心。(二) 概念讲解部分(此过程应按部就班,层层递进)1、虚数单位(1) 它的平方等于-1,即 j2=-1(2) j 和实数一起,可以按照通常的四则运算法则进行运算2、与-1 的关系i 就是-1 的一个平方根,即方程 X2=-1 的一个根,方程 X2=-1的另一个根是-i3、复数的定义形如 a+bj(a,b R)的数叫复数, a 叫复数的实部,b 叫复数的虚部,全体复数所成的集合叫复数集,用字母 C 表示。4、复数的代数形式复数通常用字母 Z 表示,即

    5、 Z=a +bj(a,b R)把复数表示成 a +bj 的形式,叫复数的代数形式。5、复数与实数,虚数,纯虚数,以及 0 的关系对于复数 a +bj(a,b R)当且仅当 b=0 时,复数 Z=a +bj(a,b R)是4实数,当 b0 时,复数 Z=a +bj(a,b R) 叫虚数,当 a=0,b0 时,Z= bj 叫纯虚数,当且仅当 a=b=0 时,Z 是实数 06、复数集与其它数集之间的关系(由学生讨论得到)7、两复数相等的定义如果两个复数 的实部和虚部分别相等,那么我们就说这两个复数相等8、共扼复数若 Z1=a +bj,Z 2= a bj,则 Z1 和 Z2 互为共扼复数,它们的实部相

    6、等,虚部互为相反数。三典型例题解析(注重引导)例 1 解方程 X2+4=0解:移项得了 X2=-4因为( 2j) 2=-4所以 X1=2j,X2=-2j例 2 解方程 X 2+6X+10=0解:方程可变形为 X2+6X+9=-1即 (X+3) 2=-1因为 (j) 2=-1则 X+3= j,或 X+3= -j所以 X1=-3+j,X2=-3-j例 3:求适合下列方程的 X 和 Y(X,YR)的值。(1)(x+2y)-j=6x+(x-y)j5(2) (x+y-1)-(x-y+3)j=0四、练习课后练习 1,2五、 小结这节课我们学习了虚数单位 j 及它的两条性质,复数的定义,实部,虚部及有关分类问题,复数相等的充要条件等等。基本思想是:利用复数的概念,联系以前学过的实数的性质,对复数的知识有较完整的认识,以及利用转化思想将复数问题转化为实数问题。六、 课后反思三个方面(一) 学生对概念的掌握(二) 数的发展和完善过程给学生的启示,(三) 学生对类比,转化的数学思想的掌握

    展开阅读全文
    提示  道客多多所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:中职应用数学复数的概念说课稿.doc
    链接地址:https://www.docduoduo.com/p-7720027.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    道客多多用户QQ群:832276834  微博官方号:道客多多官方   知乎号:道客多多

    Copyright© 2025 道客多多 docduoduo.com 网站版权所有世界地图

    经营许可证编号:粤ICP备2021046453号    营业执照商标

    1.png 2.png 3.png 4.png 5.png 6.png 7.png 8.png 9.png 10.png



    收起
    展开