1、 Au 催化剂论文:负载型 Au 催化剂的制备及其在肉桂醛选择性加氢反应中的应用研究【中文摘要】负载型纳米 Au 催化剂在许多化合物的【英文摘要】Supported gold catalysts are a kind of promising catalysts for selective hydrogenation based on their good activity and selectivity for the reduction of many compounds.In this paper, using several metal oxides doped TiO2 as sup
2、ports, which were prepared by the sol-gel method, a series of gold catalysts were prepared by the deposition-precipitation (DP) method. Additionally, a series of Au/La(OH)3 catalysts were prepared by cocipitation (CP) method. All the catalyst were tested in cinnamaldehyde hydrogenation. Their phisic
3、o-chemical properties were investigated by XRD, TEM, XPS, BET and TPR techniques. The reaction conditions of cinnamaldehyde selective hydrogenation were optimized.The results show that the performance of Au/TiO2 catalyst is influenced by the type and the content of additives. Among the metal oxide p
4、romoters tested, La2O3 modified Au/TiO2 shows the best selectivity for the reduction of carbon-carbon double bond in cinnamaldehyde. The moderate amount of La2O3(10 wt%)can obviously improve the catalytic activity and selectivity of Au/TiO2 for cinnamaldehyde hydrogenation. The presence of La2O3 in
5、TiO2 restrains the growth of TiO2 crystallites, increases the surface area of catalysts and makes the particle size distribution of Au crystallites more evenly. The gold on the surface of Au/TiO2 exists mainly as Au0, but on the La2O3 doped catalyst there is a small portion of Au3+ species besides A
6、u0, which may benefit the activation of the C=O bond of cinnamaldehyde.The results show that La(OH)3 supported gold catalyst shows high selectivity for the reduction of carbon-carbon double bond. With the characterization results, the reason of the high selectivity is that the supporter La(OH)3 and
7、Au interact to form a unique structure. The preparation conditions of Au/La(OH)3 catalyst are optimized as follows: 2 wt% of gold content, calcination temperature 100C and reduction temperature 150C.The reaction conditions of cinnamaldehyde selective hydrogenation over Au/La(OH)3 catalyst are optimi
8、zed as follows: reaction temperature 180C, reaction pressure 2.0 MPa, catalyst dosage 0.25 g, solvent isopropanol. Under the optimal conditions, the conversion of cinnamaldehyde and the selectivity to cinnamyl alcohol can reach 100% and 75.7%, respectively, after reaction 22 h.【关键词】Au 催化剂 助剂 La(OH)3
9、 选择性加氢 肉桂醛 肉桂醇【英文关键词】gold catalyst promoter La(OH)3 selective hydrogenation cinnamaldethyde cinnamyl alcohol【目录】负载型 Au 催化剂的制备及其在肉桂醛选择性加氢反应中的应用研究 摘要 4-6 ABSTRACT 6-7 第一章 文献综述 11-30 1.1 肉桂醛催化加氢合成肉桂醇的研究进展 11-20 1.1.1 肉桂醇的用途 11 1.1.2 肉桂醇的合成方法 11-13 1.1.3 非贵金属催化剂在肉桂醛选择性加氢中的应用进展 13-16 1.1.4 贵金属催化剂在肉桂醛选择性加
10、氢中的应用进展 16-20 1.2 纳米 Au 催化剂的研究进展 20-28 1.2.1 负载型Au 催化剂的制备 20-22 1.2.2 负载型纳米 Au 催化剂性能的影响因素 22-25 1.2.3 Au 催化剂在液相加氢中的应用 25-28 1.3 立题依据及主要研究内容 28-30 1.3.1 论文立题依据和意义 28-29 1.3.2 论文主要研究内容 29-30 第二章 实验部分 30-36 2.1 试剂与主要仪器 30-31 2.1.1 主要试剂 30-31 2.1.2 主要仪器及设备 31 2.2 实验方案与步骤 31-32 2.2.1 实验方案 31 2.2.2 实验步骤 3
11、1-32 2.3 催化剂的制备 32-33 2.3.1 Au/M_xO_yTi0_2 催化剂的制备 32-33 2.3.2 Au/La(OH)_3 催化剂的制备 33 2.4 催化剂的活性评价 33-34 2.4.1 实验方法 33 2.4.2 产物分析 33-34 2.5 催化剂的表征 34-36 2.5.1 X 射线衍射(XRD) 34 2.5.2 比表面和孔结构的测定(BET) 34 2.5.3 元素分析(STEM-EDX) 34 2.5.4 高分辨透射电镜(HRTEM) 34-35 2.5.5 X 射线光电子能谱仪(XPS) 35 2.5.6 程序升温还原(H_2-TPR) 35-36
12、 第三章 助剂对 Au/Ti0_2 催化剂加氢性能的影响研究 36-53 3.1 前言 36 3.2 助剂对Au/Ti0_2 催化性能的影响 36-39 3.2.1 助剂种类的影响 36-37 3.2.2 助剂添加方式的影响 37-38 3.2.3 助剂添加量的影响 38-39 3.3 助剂 La_20_3 对 Au/Ti0_2 催化性能的影响 39-51 3.3.1 助剂La_20_3 添加量对 Au/Ti0_2 性能的影响 39-48 3.3.2 焙烧温度对 Au/10%La_20_3-Ti0_2 催化剂加氢性能的影响 48-49 3.3.3 还原温度对 Au/10%La_20_3-Ti0
13、_2 催化剂加氢性能的影响 49-50 3.3.4 还原时间对Au/10%La_20_3-Ti0_2 催化剂加氢性能的影响 50-51 3.4 本章小结 51-53 第四章 纳米 Au/La(OH)_3 催化剂加氢性能的研究 53-68 4.1 前言 53 4.2 载体种类对 Au 催化剂性能的影响 53-56 4.2.1 载体种类对 Au 催化剂加氢性能的影响 53-54 4.2.2 不同载体负载的 Au 催化剂的表征 54-56 4.3 Au/La(OH)_3 催化剂上肉桂醛选择性加氢反应研究 56-67 4.3.1 Au 负载量对 Au/La(OH)_3 催化剂加氢性能的影响 56-57 4.3.2 焙烧温度对 Au/La(OH)_3 催化剂加氢性能的影响 57-63 4.3.3 还原温度对 Au/La(OH)_3 催化剂加氢性能的影响 63-67 4.4 本章小结 67-68 第五章 Au/La(OH)_3 催化剂上肉桂醛加氢反应条件的优化 68-73 5.1 前言 68 5.2 不同溶剂的影响 68-69 5.3 反应温度的影响 69 5.4 反应压力的影响 69-70 5.5 催化剂用量的影响 70-71 5.6 本章小结 71-73 第六章 结论与展望 73-75 6.1 结论 73-74 6.2 展望 74-75 参考文献 75-84