1、2011 年普通高等学校招生全国统一考试数学(理科) (浙江省)本试卷分选择题和非选择题两部分。全卷共 4 页,选择题部分 1 至 2 页,非选择题部分 3 至 4 页。满分 150 分,考试时间 120 分钟。选择题部分(共 50 分)请考生按规定用笔将所有试题的答案涂、写在答题纸上。 1.答题前,考生务必将自己的姓名、准备考证号用黑色字迹的签字笔或钢笔分别填写在试卷个答题纸规定的位置上。2.每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。不能答在试题卷上。参考公式:如果事件 互斥,那么 柱体的体积公式,AB()()PPVsh如
2、果事件 相互独立,那么 其中 表示柱体的底面积, 表示柱体的高, h锥体的体积公式 ()()AB 13Vs一、选择题(本大题共 10 小题,每小题 5 分,共 50 分。在每小题给出的四个选项中,只有一项是符合题目要求的。(1)设函数 ,若 ,则实数2,0()xf()4faa(A) 4 或 2 (B) 4 或 2 (C) 2 或 4 (D) 2 或 2(2)把复数 z的共轭复数记作 ,i 为虚数单位,若 z=1+i,则z(1)z(A) (B) (C) (D)3i3i3i3(3)若某几何体的三视图如图所示,则这个几何体的直观图可以是(4)下列命题中错误的是(A)如果平面 平面 ,那么平面 内一定
3、存在直线平行于平面(B)如果平面 不垂直于平面 ,那么平面 内一定不存在直线垂直于平面(C)如果平面 平面 ,平面 平面 , ,那么 平面ll(D)如果平面 平面 ,那么平面 内所有直线都垂直于平面(5)设实数 、 是不等式组 ,若 、 为整数,则 的最小值是xy2507,xyxy34xy(A)14 (B)16 (C)17 (D)19(6)若 , , , ,则0201cos()433cos()42cos()2(A) (B) (C) (D)335969(7)若 、 为实数,则“ ”是“ 或 ”的ab01abb1a(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不
4、必要条件(8)已知椭圆 ( 0)与双曲线 有公共的焦点, 的一条渐21:xyaba22:14yCx2C近线与以 的长轴为直径的圆相交于 两点,若 恰好将线段 三等分,则1 ,AB1AB(A) (B) 13 (C) (D) 22322bb(9)有 5 本不同的书,其中语文书 2 本,数学书 2 本,物理书 1 本。若将其随机地并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是(A) (B) (C) (D)155345(10)设 为实数, 。记集合,abc2 2()(),(1)()fxaxbcgxacxb若 , 分别为集合 的元素个数,|()0,|0.SxfRTR|S|T,ST则下列结论不可
5、能的是(A) 且 (B) 且 |1|1|(C) 且 (D) 且 |2S|T|2S|3T非选择题部分(共 100 分)二、填空题:本大题共 7 小题,每小题 4 分,共 28 分。(11)若函数 为偶函数,则实数 。2()fxaa(12)若某程序框图如图所示,则该程序运行后输出的 值为 k(13)若二项式 的展开式中 的系数为 ,常数项为6()(0x3xA,若 ,则 的值是 。B4Aa(14)若平面向量 满足 ,且以向量 为邻边的平行,1,四边形的面积为 ,则 与 的夹角 的取值范围是 。12(15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率
6、为 ,得到乙、丙两公司面试的概率均为 ,且三个23p公司是否让其面试是相互独立的。记 X 为该毕业生得到面试的公司个数。若 ,则随机1(0)2PX变量 X 的数学期望 .()E16.设 为实数,若 ,则 的最大值是 .,xy241xy2xy17.设 分别为椭圆 的左、右焦点,点 在椭圆上,若 ,则点 的坐12,F23,AB125FABA标是 .三、解答题:本大题共 5 小题,共 72 分。解答应写出文字说明、证明过程或演算步骤。(18) (本题满分 14 分)在 中,角 所对的边分别为 a,b,c,已知ABC,且 .sinsin,ACpR214acb()当 时,求 的值;5,14b() 若角
7、为锐角,求 p 的取值范围。B(19) (本题满分 14 分)已知公差不为 0 的等差数列 的首项 为 ( R) ,设数列的前 n 项na1a和为 , , , 成等比数列。nS1a24()求数列 的通项公式及 ;nanS() 记 + + + , + + + + ,当 n2 时,试比较 与A1S231nB1a212nanA的大小。nB(20) (本题满分 15 分)如图,在三棱锥 P-ABC 中,ABAC,D 为 BC 的中点,PO 平面 ABC,垂足 O 落在线段AD 上,已知 BC8,PO 4,AO3,OD2()证明:APBC;()在线段 AP 上是否存在点 M,使得二面角 A-MC-B 为
8、直二面角?若存在,求出 AM 的长;若不存在,请说明理由。(21) (本题满分 15 分)已知抛物线 ,圆 的圆心为点 M。1:C2xy2:2(4)1xy()求点 M 到抛物线 的准线的距离;1()已知点 P 是抛物线 上一点(异于原点) ,过点 P 作圆 的两条切线,交抛物线 于 A,B 两点,若过 M, P 两点的2C1C直线 垂足于 AB,求直线 的方程 .ll(22) (本题满分 14 分)设函数 , R()fx2)lnax()若 为 的极值点,求实数 ;xey()求实数 的取值范围,使得对任意的 (0,3 ,恒有 4 成立.axe()fx2e注: 为自然对数的底数。e2011 年浙江
9、省高考数学理科参考答案1、 解析:此题考察分段函数求值问题,直接代入计算即可,属简单题,选 B。2、 解析:此题考察复数的运算以及共轭复数的定义,属简单题。选 A。3、 解析:考察三视图还原直观图,由正视图排除 A、B,由俯视图可排除 C,故选 D。简单题。4、 解析:考察线面的平行与垂直关系,紧扣线面平行与垂直的判定与性质,不难选出 D 错。属简单题。5、 解析:考察线性规划及最值问题,与一般求值问题不同的是要注意定义域的取值范围,X 与 Y均取整数,画出区域,不难看出在(4,1)处取到最小值。故选 B。属中档题。6、解析:考察三角函数求值,和差化积公式的运用。在这里先将 拆成 - 2()4
10、,再利用不等式的性质求出 、 角的范围进而求出 、()2()4()sin的值,最后余弦的和差化积公式计算出结果 C。属中档题。sin47、 解析:考察充分必要性,由 知 a、b 同号且均不为 0,同正可得 ,同负可得01 1ab,故充分性成立;而由 并不能推出 同号,故必要性不能成立,选 A.1ba 或 ab、属中档题。8、 解析 :考察圆锥曲线相关综合知识,考察学生的分析能力和计算能力。首先画出示意图,由已知条件可知 - =5,以双曲线的一条渐进线 y=2x 为例,由图形的对称性可知 y=2x 与椭圆2ab、圆 在第一象限的交点横坐标之比为 1:3,即12:(0)xyC 22xya,求出 ,
11、故 ,选 C。属中档题。22(5):1:3aa212b9、 解析:考察排列组合的限制条件排列问题,此类问题可用先分类后再排的方法解决。以 、1A表示语文, 、 表示数学,C 表示物理,第一类:先排 、 ,有 种,C 排 、2A1B2 1A22中间,这样有 4 个空位可以插入 、 ,有 种,故有 =24 种;第二类,先排 、1B2244 1,有 种,C 不排 、 中间, 、 中间只能排 或 ,剩下两个可以排在一起或221A2A1B2排在两端,有 ( + )=24 种,故概率为(24+24)/ =2/5,选 B。属较难题。12 5A10、 解析:此题属于分类讨论型的题目,可采用逐个检验法进行排除。
12、A 在 a=b=0,c 0 下成立;B 在 a 0, 下成立;C 在 a 0, 下成立;D 必须在 和24bc24bc24b同时成立下才成立,故不可能。选 D。属难题。240bc11、 解析:考察偶函数的判定。利用 = 即可得 a=0;或由偶+偶=偶也可得。属简单题。()fx)f12、 解析:考察程序框图的循环与判断,属简单题,k=5。13、 解析:考察二项式展开的通式 ,由题意知 r=4 时是 r=2366212()(1)rrr rraTCxa时的 4 倍,得 a=2。属简单题。14、 解析:考察平行四边形的面积公式与解三角不等式以及向量夹角的范围 ,0由 S=|sin = ,|1,|1 可
13、得 sin 1,故 。属简单题。225615、 解析:考察相互独立事件的概率计算及离散型随机变量的概率分布列和期望的计算公式。由得 p= ,故 ,11(0)()3PXp211()()()33PXpCp, ,2253C26所以 。属简单题。()E1+=616、 解析 1:设 2x+y=t,则 y=t-2x 代入 中有241xy22310xt将它看作一个关于 x 的二次方程,则由判别式大于等于 0,可得解得 ,2x+y 的最大值为 。22(3)46()0tt15t5解析 2: 222331()()()()xyxyxyxy可解得 2x+y 的最大值为 。 (利用不等式)17、 解析:考察圆锥曲线的坐标运算。可设 A( ), B( ), ( ,0) ,,Axyxy1F2( ,0) ,由 ,可得 = , = ,将 A、B 代入 解得2F125FABB625513xy=0,故 .属中档题。Ax(,)