1、16.2 二次根式的乘除(第 3 课时)教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求重难点1重点:最简二次根式的运用2难点:会判断这个二次根式是否是最简二次根式一、预 习内容计算 =35=27=8a二、数学概念及性质最简二次根式:_最简根式的特点:_三、例题讲解设长方形的面积为 S,相邻两边长分别为 a,b.已知 S=2 ,b= ,求 a.310四、总结反思本节课学习了那些知识?本节课应掌握:_. 五、反馈练习把下列二次根式化成最简二次根式:32405.134六
2、、能力提高(一)选择题1如果 (y0)是二次根式,那么,化为最简二次根式是( )xyA (y0) B (y0) C (y0) D以上都不对xyxy2把(a-1) 中根号外的(a-1)移入根号内得( )1aA B C- D-1a1a3在下列各式中,化简正确的是( )A =3 B =512C =a2 D =x4ab3x14化简 的结果是( )37A- B- C- D-3632(二 )填空题1化简 =_(x 0)42xy2a 化简二次根式号后的结果是_2(三)解答题1已知 a 为实数,化简: -a ,阅读下面的解答过程,请判断是否正确?3a1若不正确,请写出正确的解答过程:解: -a =a -a =(a-1)31aaa2若 x、y 为实数,且 y= 2241xx,求 的值xyA七、布置作业课本 p11 第 10、11 题.