收藏 分享(赏)

医疗设备控制技术.doc

上传人:j35w19 文档编号:7599653 上传时间:2019-05-21 格式:DOC 页数:31 大小:1.57MB
下载 相关 举报
医疗设备控制技术.doc_第1页
第1页 / 共31页
医疗设备控制技术.doc_第2页
第2页 / 共31页
医疗设备控制技术.doc_第3页
第3页 / 共31页
医疗设备控制技术.doc_第4页
第4页 / 共31页
医疗设备控制技术.doc_第5页
第5页 / 共31页
点击查看更多>>
资源描述

1、现代控制技术组件与系统- - 00医疗设备控制技术单纯玉 编译第 6 章 执行机构:电动、液压和气动执行机构- -11第 6 章除颤监护仪36.1 除颤器工作原理.3611 体外除颤器 3植入式心脏除颤器 .4除颤器电路原理 .5SHOCK BOX PROTOTYPE 511.1 除颤器的工作原理9除颤器电路原理 .10除颤电极 .11同步除颤 .13自动除颤 .14除颤器的测试 .15除颤电路设计16血压的测量和监护16心电监护17R 波检测技术 .17心律失常的判别 .21血压的直接测量技术 .24间接测压法 .29现代控制技术组件与系统- - 22第 6 章除颤监护仪心室纤颤是一种致命的

2、心脏疾病。通常,心脏在周期性电信号控制下,大约一秒钟跳动一次。心脏的电活动,称为心电图(ECG) ,可在人体表面测量。一个正常的心电图如图1(a) 。如果心脏在心室纤颤状态,心脏的电气控制变得无序和混乱,心脏产生的纤颤心电图是看起来更像随机噪声,如图第1B所示。心肌不能同步兴奋使心脏蠕动样颤动收缩,导致心脏的泵血功能就完全丧失。心房肌肉颤动称为房颤,心室肌肉颤动为室颤。房颤时,心室的功能仍然正常,受到房颤的影响,心室的收缩频率增加而心律不规则。由于大部分血液是在心房收缩以前就被抽入到心室内,所以血液循环仍能继续,然而心室做功的效率大大降低,容易导致心肌衰竭。室颤发生后心室不能泵血,血液循环停止

3、,如不立即采取措施,病人在几分钟内就会死亡。而且室颤一旦发生,就不易自动消失。通常使用的除颤方法是电击除颤。电击除颤是利用足够大的电流流过心脏来刺激心肌,使所有的心肌细胞同时去极化,然后同时进入不应期,从而促使颤动的心肌恢复同步收缩状态,使心肌恢复正常(图2) 。只有一定幅度和一定的持续时间的电流才能起到除颤作用。提供这种冲击的设备称为去颤器,并有两种类型:体外和体内部。医生、护士甚至未经训练的人员也可以使用体外除颤器来冲击心室颤动昏迷的患者。这些设备越先进自动化程度越高,使用者只要遵循一些简单的指令就可完成操作,这样的设备被称为自动体外除颤器(AED ) 。体内除颤器类似心脏起搏器,植入有心

4、室颤动风险患者的体内。他们监测心电活动,必要时提供除颤冲击。现代除颤器也可以作为心脏起搏器,被称为植入式心脏复苏器(ICD) 。6.1 除颤器工作原理611 体外除颤器 体外除颤器的工作原理是利用体表面电极对人体进行电冲击。自动体外除颤器在学校、在飞机上以及其他公共场所越来越普遍。典型的AED如图 3所示。每个电极面积至少50平方厘米,由自粘垫粘贴在皮肤上。在电极与皮肤之间放置导电膏,以减少皮肤的电阻。从体外通过电极的电流只有一小部分到达心脏。除颤器的工作原理是高电压电容器充电,然后通过病人的身体放电(图4) 。当开关接到向侧,约200F电容被充电至1500V,这意味着存储电荷0.3C和存储的

5、能量225 J。开关 S切换到右侧,电容器通过患者的机体电阻(50或更大)放电,产生的峰值电流为30A ,持续时间为10 ms的指数衰减波。实际的除颤器电路比图4所示的电路更复杂。例如,用于AED供电的电池电压通常是 12V,需要高压变换器将12V电压提升所需电容器充电电压水平。此外,许多除颤器使用双相指数截断波形,其除颤效果比单第 6 章 执行机构:电动、液压和气动执行机构- -33相波形(图5)好。双相放电波形的产生方式是在电容部分放电后,通过开关电路反转电极的极性,然后继续放电。开关电路必需具有是高电压功能。在自动体外除颤器的“自动”一词是指该设备可以自行决定是否需要除颤。 AED监测心

6、电图,并有足够内存来存储包括心电在内的数据。允许设备分析心电图,并判断是否发生室颤。如果发生室颤,AED会告知医护人员给病人电击。大多数AED提供有关该设备安装和操作电极文字和语言指示。从理论上讲,基本培训还是必需的。除颤成功率如图6所示的概率曲线。冲击能量越高,除颤的概率越大。对应50成功率的电击强度称为ED50 。为了减少电击失败的概率,医生常使用ED90以上的强度。这也增加冲击能量副作用,所以AED 通常先用较低低能量冲击,比如 200J。如果失败,它提供的冲击能量会增加至360J最大值。在医院和救护车使用的体外除颤器与 AED类似,但它们不是自动(医生决定何时冲击病人,而不是设备决定)

7、 ,这种除颤器通常是交直流供电。除颤波形基于该电容放电和波形整形电感器(阻尼正弦波)或截断开关电路。该电路截断电容的指数衰减产生指数截断波形。描述除颤波形的参数有除颤波形相数、除颤电流倾度以及除颤波形持续时间。电极极性在整个脉冲不变形成单相波形,在脉冲时间,电极极性反转形成双相波形。斜度确定脉冲持续时间内刺激波形的局部减少。它描述了电容到病人的身体放电波形的陡峭程度,并说明有多少储存的能量传递到组织中。斜度是依赖于时间常数 RC(放电电容容量和放电路径上的胸阻抗乘积) 。持续时间是除颤波形作用时间。通常,持续时间的范围是840ms。植入式心脏除颤器植入式除颤器心脏起搏器类似,但它的电路与AED

8、相似。电池、电容器和电子元件封装在金属外壳内(钛或不锈钢) ,除颤器植入胸前皮肤下(图7) 。外壳的典型尺寸是50mm50mm15mm。外壳往往作为ICD 的一个电极。 ICD的电容比AED的电容稍小一些(125F ) ,在ICD的电容充电电压只有600V ,这意味着电荷 0.075C和能量23J。ICD的提供的能量大约是AED 的十分之一,但在ICD的是通过放置在心脏电极进行冲击,因此,具有同样的除颤效果。ICD的组织阻抗至少 50,这意味着放电时间常数5ms 。许多心脏除颤器包含两个250F 电容,充电时这两个电容并联连接,总电容500F。放电时,这两个电容器的连接改成串联,产生前面提到的

9、125F电容。这种技术的一个好处是,每个电容器仅需要充电到300V,串联后会输出600V总电压。大多数ICD最大冲击能量有30J,由锂电池提供能量。两个3V电池串联得到6V电源。由于电容电压为600 V,电池用于驱动高压电源。除颤器植入患者体内,要改变它们需要外科手术,因此电池的寿命是非常重要。电池容量通常以安培小时表示(Ah) (相当于3600 C电荷) ,典型值为3Ah。如果每次电容器的充电电量0.075 C,电池应能够提供数千次冲击。然而,电池给持续心电监测电路提供电源,因此电池寿命在5年左右。通常情况下,电容器的充电时间需要10 20s。如果充电时间显着增加,可能造成冲击延误。锂电池电

10、压逐渐衰减,可以用电压可作为电池的剩余使用年限指标。现代控制技术组件与系统- - 44除颤器电路原理SHOCK BOX PROTOTYPEModern implantable defibrillators are true marvels of microelectronic packaging. Figure 8.33 shows the innards of one such device. This level of miniaturization is achieved using packaging technologies that are outside of the typic

11、al hobbyists budget. In fact, many startup companies developing implantable devices often chose not to pursue the technologies required for miniaturization (e.g., custom ICs, chip-level packaging, ceramic substrates), and instead, use off-the-shelf components and inexpensive manufacturing technologi

12、es (e.g., surface-mounted components, low-power commercial ICs, printed circuit boards) so theycan invest their efforts into developing the technologies that differentiate them from the rest of the pack. For this reason it is not easy to build an experimental implantable defibrillator. Instead, we c

13、hose to present the instrument of Figure 8.34 only as a demonstrator of the internal workings of an implantable defibrillator. It shows the considerations included in implementation of the various modules of a shock box, the circuitry responsible for generating high-voltage defibrillation pulses. Th

14、is instrument does not include simulation of the parts of an automatic defibrillator that are responsible for detecting ventricular arrhythmias. As shown in Figure 8.35, power for the circuit is obtained through a power lineoperated medical-grade power supply. The _15-V line is used to power an isol

15、ated dc/dc converter that yields isolated 30Vdc. The 30 V is used to operate a smart gel-cell battery charger which charges two 12-V, 1.2-Ah gel-cell batteries in series. The battery powers the modules microcontroller constantly. Whenever the defibrillation module is enabled, the battery is made to

16、power a high-voltage power supply which charges the energy-storagecapacitor bank (165 F) to a programmable level (up to 50 J).The level of charge to be stored in the capacitor bank is selected through a digital-to-analog converter controlled by the microcontroller. The actual voltage across the capa

17、citor bank is monitored by the microcontroller through an analog-to-digital converter which samples the voltage divider internal to the high-voltage power supply. Once charged to the desired level, the defibrillation pulse is generated by commuting the capacitor bank onto the defibrillation load thr

18、ough an H-bridge switch matrix. The switches in the H-bridge are under the control of the microcontroller. Internal discharge of the capacitor bank is possible through a circuit that dumps stored 第 6 章 执行机构:电动、液压和气动执行机构- -55charge into a dummy load. This makes it possible to discharge capacitor bank

19、s after a capacitor reform procedure1 as well as to disarm the defibrillation module after an aborted defibrillation. Voltage across the capacitor bank as well as the capacitor charge and discharge currents can be monitored using an oscilloscope or other data acquisition system by way of isolation a

20、mplifiers. The module is controlled by an onboard microcontroller. It receives parameter information and commands through an isolated RS232 line. Defibrillation commands are entered via a control computer. In addition to running the charge and defibrillate sequences, the microcontroller also perform

21、s housekeeping functions (e.g., verify clocks, verify stored energy, perform capacitor reform). To ensure that the required energy has been stored in the capacitor bank prior to defibrillation, the microcontroller reads the voltage across the capacitor bank (using a suitable voltage divider) through

22、 an analog-to-digital converter. To enable emergency manual charging and defibrillation (i.e., not through commands from the computer), isolated pushbutton switches are available on the instrument. Whenever activated in the manualmode, the defibrillation module charges to the full energy selection,

23、displays the charge status, and awaits for the manual command to defibrillate. Defibrillation in the manual mode is done at preset waveform parameters. Lead impedance is estimated prior to delivery of a shock or under command from the control computer. Inappropriate lead impedances cause the defibri

24、llation command to be aborted since delivering high energies into inappropriately low loads can be dangerous, because the developed currents pose fire or explosion risks. The different modules of the circuit are presented in the following sections. The interconnection between these modules takes pla

25、ce as depicted in Figure 8.36. Power Supply SectionA Condor medical-grade (low-leakage, redundantly insulated) power supply is used to generate_15Vdc for the defibrillation module. The power line is applied to the power supply input terminals through a medical-grade connector/switch/fuse/filter/volt

26、age-selector module. The power supply has low leakage and a redundant isolation on the power transformer, and its linear regulator is capable of producing 15 V at 0.4 A. As shown in Figure 8.37, a Power Convertibles HB04U15D15Q (C 舒张压处为0.43 0.73 。第 6 章 执行机构:电动、液压和气动执行机构- -2929图 3.12 袖带内压(a) 、搏动波(b)

27、和柯氏音(c)的时相关系搏动法血压检测是在袖充气后逐渐放气过程中进行,不易受外界声音的干扰,而外界震动造成测量的误差可以采用波形匹配法进行消除。波形匹配方法基于如下假设:当袖带内气压维持在某一固定水平上时,由动脉搏动引起的袖带内气压搏动信号在幅度、波形和持续时间上基本一致。波形匹配法要求系统采用阶梯放气方式,基本过程为:首先对袖带充气,使其袖压力达到 l60mmHg 或者使其压力高于上次收缩压 30mmHg,如果上次检测时未能检测到收缩压和舒张压,仅获得平均压数据时,其袖带压力高于上次平均压 65mmHg。然后每次放气 510mmHg。在每一个静压平台上连续采集两个相邻搏动信号,首先比较两个搏

28、动信号的幅度、波形是否一致,然后再比较二次搏动的时间间隔与心动周期是否一致,如果两条件均符合,则认为信号有效,将两个搏动信号的幅度平均,以此平均值作为该静压级上的搏动幅度。如果系统在某一静压级上检测不到两个匹配的搏动信号则降低袖带压采集信号,直至袖带内气压下降到约为 40mmHg,最后放掉袖带内的剩余空气,完成一次检测过程。这种算法对于去除突发的外部干扰和早搏有效,但患者有严重的连续性心律不齐或某些畸形脉搏时,该算法很难找到匹配的搏动波,会导致测量时间延长,甚至无法测量出血压。搏动法抗干扰性强,可在较嘈杂的环境中使用,较少受操作因素的影响,并且还可用于婴儿、小孩和休克患者的血压测量,以及动物实验中动物的血压测量,这些情况无法使用柯氏听音测量血压。搏动法多用于自动无创血压仪,但临床医生仍普遍使用听诊法。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报