1、高等数学图形演示系统高 等 教 育 出 版 社高等教育电子音像出版社天津大学 田秀恭 教授研制纸苛拔卷要驾瓢直策只谋渝潦颤募赃给钳抬恫篷捞胰走忻肪石诫擂灾榔贾工科数学分析基础总目录工科数学分析基础总目录高等数学是工科一门重要的基础课,课程长,延续一年级上、下两个学期,课时达 176或更多。学生在学习的过程中,往往因缺乏对空间形体的想象能力,而感到学习困难。对教师来说,课程紧,内容多,一直存在黑板画图难的问题。怎样才能加强这种能力的训练和培养,使典型空间形式的图像成为学生头脑中的一种常识,确实是个很值得研究、解决的问题。CAI课件高等数学图形演示系统就是为解决这个问题而制作的。本课件演示的图形形
2、象逼真、有较强的立体感 ,对于复杂的空间几何关系,能够明确、清晰地用立体形象表达出来;同时,每一个图形的演示都力图包括它的基本思想和 前 言奋凛旗慢年瓦稳尧撩董池抓庆挺蹲苇篷旱桌耽源恤类炳萧触贡沦膳查财续工科数学分析基础总目录工科数学分析基础总目录形成过程,并用动画体现出来。因此,它不仅可以加深印象,在相当程度上起到甚至超过教具的作用,而且会引起学生对数学的学习兴趣,有利于培养联想和创造力,也有利于自学。本图形演示中各图的选题,以同济大学 “ 高等数学 ” 教材为线索,以比较重要的概念、定理和空间图象较为典型而又复杂的题目为主。内容包括一元函数微分学,一元函数积分学,空间解析几何,多元函数微分
3、学,二重积分,三重积分,重积分应用,付立叶级数等八个部分。演示的图形共有 148个。演示的图形构成了高等数学比较完整的、与文字教材基本配套的图形系统。二重积分、三重积分涉及的立体区域画图是教与学中最大的难点。本课件以此作为重点,给出了一系列曲面与曲面相交的过程,交线的形状。力求清晰、逼真,突破这一难点,改变讲到这儿时课堂上教师画不出、难讲清、用手比划的局面。 .摆歹掇暴巩隔溪肾午夯落用窟琴幻招矿屿骗熏遥歇重幸彤捉翟录惕奈成向工科数学分析基础总目录工科数学分析基础总目录在三重积分部分,给出立体图形演示之前,先给出了 “ 不画立体图做三重积分 ” 训练,以便学生再遇到三重积分某些问题时,即使画不出
4、立体图,也能识别曲顶柱体的上顶、下底和投影区域,解决计算立体体积、表面积、重心等等问题。本图库注重基础知识,并充分利用图形演示的优势改革传统的教法。例如:各类极限定义的几何解释,导数、微分、弧微分、偏导数、全微分、方向导数的几何意义等都是本图库的内容。关于矢量积的分配律,证明很烦琐,略证或不证,学生又常有疑问。在本课件中,利用图形的 “ 一投一转” ,形象而又精练地完成了证明。再如:曲边梯形的面积,曲顶柱体的体积,一般讲到这些,教师要写很多板书,而其中实质性的思想 元素法却很难体现出来。这里用连续的图形演示生动地表述了这个面积或体积的产生过程及其定义的实质,加上教师画龙点睛的讲解,会收到很好的
5、效果。 .蜂啮革据援郎噪离谣爷拒匡镭畴攘鄙郭苑出荐下傈担亏藉嗓栖闹竭密驼闭工科数学分析基础总目录工科数学分析基础总目录本图库与传统教材相比,适当地增大了信息量。例如:常用曲线的生成、旋轮线的应用、直纹面、渐近面等。对学生普遍感兴趣但一般教科书没有涉及的少数图形问题也做了研究和尝试。比如,关于二重极限不存在的一个典型例题,一般都必讲而且只讲计算,其曲面的形状历来是个谜。本课件做出了该曲面的立体图形,给出了清晰的几何的分析。目的是启发学生的创新思维,供读者选用。希望同学们能利用形数结合的方法,从空间几何图形的演示与它的分析表达式二者关系的反复联想琢磨中,认识变量怎样刻画运动,进一步加深对高等数学重
6、点和难点的理解;同时得到对空间几何图形想象力的锻炼,逐步学会画图;提高解题准确度和速度;并能理论联系实际,提高创新能力。本图库主要用于辅助教师在课上讲课,没有配音。课件中每个图都一步步用动画演示,公式和简要的计算也一步步.逮符颖铁旺尽钙膛副麦獭邑晾匀类抖金噎讶氨搬慧合进斋林疮要蒂恼杭纽工科数学分析基础总目录工科数学分析基础总目录出现。每两步的时间间隔由讲课教师掌握,以便于教师的讲解启发和学生的思考练习。本课件研制了三年,在教学中使用了两年。期间得到天津大学各级领导的大力支持,也得到了天津市教委的资助。2000年本课件荣获 “ 天津市 CAI课件评审 ” 一等奖。本课件先后在我校、天津市和清华大
7、学演示了几次,受到教师们热烈欢迎和鼓励。承蒙高等教育电子音像出版社的同志们大力协助,使本课件得以正式出版。作者在此一并表示感谢!由于研制者水平有限,错误和不足之处难免,希望读者不吝指教 .研制者二零零一年十二月于天津大学 .檄四抛脐痘遥潭靳坐陆关当祖椎运藻捣循宣棵戚李活况蛔萍蟹谐靶跨强逾工科数学分析基础总目录工科数学分析基础总目录本课件是高等数学课程的图形演示库,主要为了辅助教师在课上讲课(因此没有配音),解决高等数学教师黑板画图难的问题,从而提高学生的空间想象能力。其中每个图都一步步用动画演示,公式和计算也一步步出现。每两步的时间间隔由讲课教师掌握,可以按鼠标左键,或 键,或者按空格键来控制
8、,以便于教师的讲解启发和学生的思考。本图库在 windows9x下正常运行。图库分九个部分:前言,总目录; 1 一元微分; 2 一元积分; 3 空间解析; 4 多元微分; 5 二重积分; 6 三重积分; 7重积分的应用; 8 付氏级数。每一部分各自设有主目录。为便于检索,在每一部分的主目录中每一个图题后建立说 明 书慨油砍丹仟唾督影卡湛于增垒唇戚隙武廉睁浓掠蹄么般鹊拘空需裹叉差馒工科数学分析基础总目录工科数学分析基础总目录了超级链接。比如: 1 中的 图 8 ,读者点击该题目后的按钮 ,可立即找到需要的图形 “ 8. 导数的几何意义 ” 。为了检索快捷,每一页面的右下角都有返回本部分主目录的按
9、钮 ,读者若不想按顺序看下面的图,随时点击一下这个按钮,就回到这一部分的主目录。再按照前述方法找您需要的图即可。若想选择组成某个图形的第几张幻灯片,请单击右键,再指 “ 定位 ” ,在下拉菜单中指 “ 按标题 ” ,就可以找到您需要的那张幻灯片,点击它即可。研制者二零零一年十二月于天津大学.夹阉益肝乞衣源来惹肆换掖葬渣译败酬傀局殷绑昭怂遥起催但嗓瘦虐蟹设工科数学分析基础总目录工科数学分析基础总目录1 一元函数微分学1 函数极限的几何解释 2 函数的左极限 3 x时的极限4 x趋于正无穷时的极限 5 数列的极限 6 无穷大 7 函数的连续性 8 数的几何意义 9 微分的几何意义 对函数进行全面讨
10、论并画图:2 一元函数积分学19 曲边梯形的面积y = x2arctanx11 1213 14 1516总 目 录17 弧微分1018 曲率22 曲边扇形的面积 23 旋轮线 24 旋轮线也叫摆线 2021曳滑腥靴旗角搅乃氧馈肆名盗藉贬查钩适峰府唉蠢味叹川谨雄残途资倡绑工科数学分析基础总目录工科数学分析基础总目录求由双纽线 内部的面积。37 平行截面面积已知的立体体积 38 半径为 R的正圆柱体被通过其底的直径并与底面成 角的平面所截,得一圆柱楔。求其体积。39 求以半径为 R的圆为底,平行且等于底圆直径的线段为顶,高为 h的正劈锥体的体积。40 旋转体体积 (y =f (x)绕 x轴 ) 4
11、1 旋转体体积 (x =g(y)绕 y轴 ) 42 旋转体体积(柱壳法) 43 旋转体的侧面积33343536.25 旋轮线是最速降线 26 心形线27 星形线 28 圆的渐伸线29 笛卡儿叶形线 30 双纽线31 阿基米德螺线 32 对数螺线妥懂帅猾撕佰拱各桑鳃警哲疮蓑玩蝉倍遣仓丧械冈人鹤揣靴摩呢捎耙壳菌工科数学分析基础总目录工科数学分析基础总目录3 空间解析几何44 直角坐标系 45 两矢量和在轴上的投影 46 矢量积的分配律的证明 47 混合积的几何意义 48 一般柱面 F(x, y)=0 49 一般柱面 F(y, z)=0 50 椭圆柱面 51 双曲柱面 52 抛物柱面 53 旋转面
12、54 双叶旋转双曲面 55 单叶旋转双曲面 56 旋转锥面 57 旋转抛物面 58 环面 59 椭球面 60 椭圆抛物面 61 双曲抛物面 62 双曲面的渐近曲面 63 单叶双曲面是直纹面 64 双曲抛物面是直纹面 65 一般锥面 66 空间曲线 圆柱螺线 67 空间曲线在坐标面上的投影 68 空间曲线作为投影柱面的交线 (1) 69 空间曲线作为投影柱面的交线 (2)70 作出平面 y=0 , z=0, 3x+y =6, 3x+2y =12 和 x+y+z = 6所围成的立体图形.717372斧牵脾咬勒董掌班垣梧浴魁獭乓弄逝押叫叶癌哥声阅史牧珊殊贝特贾吕沤工科数学分析基础总目录工科数学分析基
13、础总目录的图形,该函数81 二元函数而4 多元函数微分学74 二重极限存在的例子 75 二重极限不存在的例子 76 偏导数的几何意义 77 全微分的几何意义 78 方向导数 79 七框图 80 多元函数的极值.85 二重积分的计算: D是矩形区域 86 二重积分的计算: D是曲线梯形区域 87 二重积分计算的两种积分顺序5 二重积分84多元函数积分学概况82 83 曲顶柱体的体积予晦残羞脆炉舅忱骄俺缕童弓虾允润沽碑场贰批洱贵压凝腐伎严爱励桃娃工科数学分析基础总目录工科数学分析基础总目录88899091 将二重积分化成二次积分 .D: x+y =1 , xy =1 , x= 0 所围92 将二重
14、积分化成二次积分3x2y+1 = 0 共同围成的区域 D: 由四条直线 : x =3, x = 5, 3x2y+4 = 0, 93 将二重积分换序: .95 (练习)将二重积分化成二次积分96 为什么引用极坐标计算二重积分94 将二重积分换序:97 利用极坐标计算二重积分 98 怎样用极坐标计算二重积分 (1) 极点位于区域 D 的外部 99 怎样用极坐标计算二重积分 (2) 极点位于区域 D 的内部 沧闸砾沽怠恃硅月挥矽固契脑代歉虎感暂疹阎腕敖士汗抚杀雾霖挨鸟屑昔工科数学分析基础总目录工科数学分析基础总目录100102103101106 将积分化为极坐标形式105 将积分换序104.6 三重
15、积分梯煎押捞顺仿粮覆获脱全蛊忱肾箭嗡喘牵耙六时弥权堕锌弃品毁况尚上垛工科数学分析基础总目录工科数学分析基础总目录计算下列三重积分: =a ,b ; c ,d ; e , g107 108 为曲顶柱体109 :平面 x=0, y=0 , z=0, x+2y+z =1所围成的区域 .110 :平面 y=0 ,z=0, 3x+y=6, 3x+2y=12, 和 x+y+z=6 所围成的区域。111112113114117 柱面坐标 118 柱面坐标的坐标面 119 柱面坐标下的体积元素 120121计算 .115 计算三重积分的另一思路(对有的问题适用) 116 例,计算羚菇食惰陵疑舌稀恶除漓郁引色喻
16、及瓣雕疡篡鹅拈筐奏摧疥腊卉伊锣痞友工科数学分析基础总目录工科数学分析基础总目录122 球面坐标 123 球面坐标的坐标面 124 球面坐标下的体积元素 1251261271281297 重积分的应用131130 求半径为 a的球面与半顶角为 的内接锥面所围成的立体的体积。133132 .计算下列三重积分:免鲤坯犊瓮眼猾摹镑锥茄务男跋廊勃浴秽镰冻谩摈睫剧咽瘦草拯赵渐者岳工科数学分析基础总目录工科数学分析基础总目录135138137134139 曲面面积142143140141.136厘坦酗乞碗巫蔑鸟蹈竖吻焙晨王协侯斥内蜘浴屿院恿锚蔽脏胞洽松沸尺糙工科数学分析基础总目录工科数学分析基础总目录1461458 付里叶级数147148.144 求位于圆 r=2sin 和圆 r=4sin 之间的均匀薄片的重心 . 镍秒仅鹰睫产蔫挎演铱官鞋次砸匀缘图嘻意潍邱铰榆镍笔适乡亏绰署琢钓工科数学分析基础总目录工科数学分析基础总目录谢谢使用返回首页.婉傅叭耶隅湍禾刮坐锰瓮俐灶倚蚌吹倘趣阑折埔匹啊瘦党尧余豆恋疾泼袋工科数学分析基础总目录工科数学分析基础总目录