1、初三数学 圆周角定理一、概述:圆周角定理是课程标准高中选修 4-1 第二章第 2.1 节的内容,是学生在初中已经初步掌握圆与直线的关系的基础上再深入研究圆与直线的一节起始课,它是解决圆内有关角的问题的基础,也为学习有关圆的内接四边形的角的关系做准备。本节重点在于通过圆周角定理的证明和应用,恰当的引导学生理解“分类”的数学思想在数学证明的作用;难点在于如何在具体的几何问题情境中,引导学生从不同角度思考问题,把比例关系转化为寻找相似三角形,让学生充分体会到“转化”思想的具体应用。二、教学目标:1. 知识与技能使学生理解和掌握圆周角定理以及两个相关的推论,并能够用这个定理和推论解决有关的几何问题2.
2、 过程与方法学习并领会圆周角定理的证明推导过程,应用圆周角定理解决几何问题过程,使学生体会和掌握“分类”和“转化”这两种数学思想在几何证明中的作用,培养学生的发散思维和严谨的逻辑思维。3. 情感与价值观提高学生学习数学的积极性,培养他们勤于思考,敢于探索的思维习惯使学生体会到数学的逻辑严谨的特征。三、学习者特征分析本节课的学习者特征分析主要是根据教师平时对学生的了解而做出的。(1) 我校是省一级学校,总体上看,本班学生的数学基础还可以(2) 学生已经对圆周角定理有初步的了解,有一定的几何证明的基本知识(3) 学生的抽象数学思维还不强, “分类” “转化”的数学思想还不熟悉。四、教学策略的选择与
3、设计(1)教学方法:合作探究、启发引导、互动讨论、反馈评价(2)学习方法:自主探究、观察发现、合作交流、归纳总结(3)教学手段:采用多媒体辅助教学五、教学资源(1) 新课标北师大版教材高中数学选修 4-1(2) 教师自制的为本课设计的多媒体课件(3) 三角板、圆规等作图工具六、教学过程:教学环节 教 学 内 容 设 计 意 图一、提出问题,铺垫导入1、介绍弧的度数的概念:1 的圆心角所对的弧称为 1 的弧,即弧的度数等于它所对的圆心角的度数。问题:已知:如图 AC 是O 的直径,B 是O上异于 A,C 的一点,那么,BAC 与BOC 有什么关系?BAC 的度数与弧 BC 的度数呢?由问题引发思
4、考,由此引出新课中的圆周角定理(由学生回答) ,激发学生的学习兴趣,为进一步的学习作好铺垫。B CAO二、 合 作 学 习 , 探 索 新 知圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半;圆周角的度数等于它所对的弧的度数的一半探究思考:如何证明前面提出的问题?若 AC,BC 都不是直径时,又如何证明该问题?(1) (2)推论 1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等推论 2:半圆(或直径)所对的圆周角是直角;90 的圆周角所对的弧是半圆根据学生的回答,给出圆周角定理以及两个推论的文字叙述,并通过证明提出的问题,引导学生思考另外两种情境的证明,让学生体
5、会几何证明中的分类思想CBAOB CAO教学环节 教 学 内 容 设 计 意 图三、 指 导 应 用, 课堂跟踪练习:(1) 如图 1,已知 OA,OB,OC 都是O 的半径,AOB=2BOC,求证:ACB=2BAC(2)如图 2,在O 中,BAC=,则OBC= 例题讲练(圆周角定理及其推论的应用)已知:如图 4,AB 是O 的一条弦,ACB 的平分线交 AB 于点 E,交O 于点 D.求证: CBDEA分析:由于 AC 和 CE 在ACE 中,DC 和 CB 在 DCB 中,要证明线段成比例,只要证明 ACE 和DCB 相似,这样,就把线段成比例问题“转化”为三角形相似问题,也就是要找对应角
6、相等巩固练习:(1) 已知:如图,ABC 内接与O,AEBC,垂足为 E,AD 是O 的直径。求证:ABAC=ADAE (2) (变式练习)如图,圆内接ABC 中,AB=AC ,D 是 BC 边上的一点, E 是直线 AD 和 ABC 外接圆的交点。() 求证: AB2=ADAE() 当 D 为 BC 延长线上的一点时,第()题的结论成立吗?若成立请证明;若不成立,请说明理由跟踪练习的设计目的在于及时掌握基础知识,对学生的完成情况给予评价,使学生体验到成功或得到鼓励例题的讲练设计主要是对圆周角定理及其推论的应用,可以与学生共同分析和探讨证明思路,既锻炼了他们的数学表达能力,更培养了他们严谨的几
7、何证明思维,也让学生体会到几何证明中的“转化”思想练习的解决对定理的应用起巩固的作用,同时强调规范的数学证明书写和严谨的数学思维;变式练习在巩固的基础上设计开放型的问题,可以发挥每个学生的才智,培养学生的发散思维,使学生敢于创新,进而提高学生分析问题和解决问题的能力COBA1DOCBA2DEA BC4ODEB CAODB CAE教学环节 教 学 内 容 设 计 意 图 四、归纳小结1圆周角定理以及两个推论的证明和应用2几何证明中的“分类”和“转化”数学思想的应用通过课堂小结,深化对知识理解,完善认识结构,领悟思想方法,强化情感体验,提高认识能力五、作业设计作业:课本 P20 A 组 第 4,6 题课外作业有利于学习巩固所学知识,同时有利于教师发现教学环节中存在的不足,便于及时反馈调节。