1、1.2 应用举例,解斜三角形公式、定理,正弦定理:,余弦定理:,三角形边与角的关系:,2、 大角对大边,小角对小边 。,2.余弦定理的作用,(1)已知三边,求三个角;,(2)已知两边和它们的夹角,求第三边和其它两角;,(3)判断三角形的形状。,推论:,三角形的面积公式,解斜三角形中的有关名词、术语:,(1)坡度:斜面与地平面所成的角度。 (2)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角。 (3)方位角:从正北方向顺时针转到目标方向的夹角。 (4)视角:由物体两端射出的两条光线在眼球内交叉而成的角,A,C,B,51o,55m,75o,测量距离,例
2、1.设A、B两点在河的两岸,要测量两点之间的距离。,测量者在A的同测,在所在的河岸边选定一点C,测出AC的距离是55cm,BAC51o, ACB75o,求A、B两点间的距离(精确到0.1m),分析:已知两角一边,可以用正弦定理解三角形,解:根据正弦定理,得,答:A,B两点间的距离为65.7米。,A,B,C,D,A,B,a,解:如图,测量者可以在河岸边选定两点C、D,设CD=a,BCA=,ACD=,CDB=, ADB=,分析:用例1的方法,可以计算出河的这一岸的一点C到对岸两点的距离,再测出BCA的大小,借助于余弦定理可以计算出A、B两点间的距离。,解:测量者可以在河岸边选定两点C、D,测得CD
3、=a,并且在C、D两点分别测得BCA=, ACD=, CDB=, BDA=.在 ADC和 BDC中,应用正弦定理得,计算出AC和BC后,再在 ABC中,应用余弦定理计算出AB两点间的距离,注:阅读教材P12,了解基线的概念,练习1.一艘船以32.2n mile / hr的速度向正北航行。在A处看灯塔S在船的北偏东20o的方向,30min后航行到B处,在B处看灯塔在船的北偏东65o的方向,已知距离此灯塔6.5n mile 以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?,练习2自动卸货汽车的车厢采用液压机构。设计时需要计算油泵顶杆BC的长度已知车厢的最大仰角是60,油泵顶点B与车厢支点
4、A之间的距离为1.95m,AB与水平线之间的夹角为620,AC长为1.40m,计算BC的长(精确到0.01m),(1)什么是最大仰角?,(2)例题中涉及一个怎样的三角形?,在ABC中已知什么,要求什么?,练习2自动卸货汽车的车厢采用液压机构。设计时需要计算油泵顶杆BC的长度已知车厢的最大仰角是60,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为620,AC长为1.40m,计算BC的长(精确到0.01m),已知ABC中AB1.95m,AC1.40m, 夹角CAB6620,求BC,解:由余弦定理,得,答:顶杆BC约长1.89m。,测量高度,测量垂直高度,1、底部可以到达的,
5、测量出角C和BC的长度,解直角三角形即可求出AB的长。,图中给出了怎样的一个 几何图形?已知什么, 求什么?,想一想,2、底部不能到达的,例3 AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法,分析:由于建筑物的底部B是不可到达的,所以不能直接测量出建筑物的高。由解直角三角形的知识,只要能测出一点C到建筑物的顶部A的距离CA,并测出由点C观察A的仰角,就可以计算出建筑物的高。所以应该设法借助解三角形的知识测出CA的长。,解:选择一条水平基线HG,使H,G,B三点在同一条直线上。由在H,G两点用测角仪器测得A的仰角分别是,CD=a,测角仪器的高是h.那么,在
6、 ACD中,根据正弦定理可得,例3. AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法,分析:根据已知条件,应该设法计算出AB或AC的长,CD=BD-BC177-27.3=150(m),答:山的高度约为150米。,解:在ABC中,BCA= 90 +, ABC= 90 -, BAC=-, BAD=.根据正弦定理,,分析:要测出高CD,只要测出高所在的直角三角形的另一条直角边或斜边的长。根据已知条件,可以计算出BC的长。,例5 一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南2
7、5的方向上,仰角8,求此山的高度CD.,解:在ABC中,A=15, C= 25 15=10. 根据正弦定理,,CD=BCtanDBCBCtan81047(m),答:山的高度约为1047米。,例6 一艘海轮从A出发,沿北偏东75的方向航行67.5n mile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0n mile后到达海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离(角度精确到0.1,距离精确到0.01n mile)?,解:在 ABC中,ABC1807532137,根据余弦定理,,3. 3.5m长的木棒斜靠在石堤旁,棒的一端离堤足1.2m的地面上,
8、另一端沿堤上2.8m的地方,求地对地面的倾斜角。,解:如图,在ABC中由余弦定理得:,我舰的追击速度为14海里/小时,,练习,又在ABC中由正弦定理得:,故我舰航行的方向为北偏东,例7 在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm),(1)已知a=14.8cm,c=23.5cm,B=148.5;,(2)已知B=62.7,C=65.8,b=3.16cm;,(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm.,例8 在某市进行城市环境建设中,要把一个三角形的区域改造成市内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少(精确到0.1cm)?,解:设a=68m,b=88m,c=127m,根据余弦定理的推论,,总 结,实际问题,