收藏 分享(赏)

高频电子线路4.ppt

上传人:wspkg9802 文档编号:7289143 上传时间:2019-05-13 格式:PPT 页数:83 大小:4.90MB
下载 相关 举报
高频电子线路4.ppt_第1页
第1页 / 共83页
高频电子线路4.ppt_第2页
第2页 / 共83页
高频电子线路4.ppt_第3页
第3页 / 共83页
高频电子线路4.ppt_第4页
第4页 / 共83页
高频电子线路4.ppt_第5页
第5页 / 共83页
点击查看更多>>
资源描述

1、第 4 章 高频功率放大器,4.1 谐振功率放大器的工作原理,4.2 晶体管功率放大器的性能分析,4.3 高频功率放大器的电路组成 4.4 宽带高频功率放大电路与功率合成电路 4.5 丙类倍频器,4.1 谐振功率放大器的工作原理,1、使用高频功率放大器的目的,放大高频大信号使发射机末级获得足够大的发射功率。,2、高频功率信号放大器使用中需要解决的两个问题,高效率输出,高功率输出,高频功率放大器和低频功率放大器的共同特点都是输出功率大和高。,联想对比:,3、谐振功率放大器与小信号谐振放大器的异同之处,相同之处:它们放大的信号均为高频信号,而且放大器的负载均为谐振回路。,不同之处:为激励信号幅度大

2、小不同;放大器工作点不同;晶体管动态范围不同。,谐振功率放大器 波形图,小信号谐振放大器 波形图,小信号谐振放大器 波形图,谐振功率放大器 波形图,4、谐振功率放大器与非谐振功率放大器的异同,共同之处:都要求输出功率大和效率高。,功率放大器实质上是一个能量转换器,把电源供给的直流能量转化为交流能量,能量转换的能力即为功率放大器的效率。,谐振功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),其工作状态通常选为丙类工作状态(c90),为了不失真的放大信号,它的负载必须是谐振回路。,非谐振放大器可分为低频功率放大器和宽带高频功率放大器。低频功率放大器的负载为无调谐负载,

3、工作在甲类或乙类工作状态;宽带高频功率放大器以宽带传输线为负载。,电路。功率放大器的主要技术指标是输出功率与效率。,工作状态,功率放大器一般分为甲类、乙类、甲乙类、丙类等工作方式,为了进一步提高工作效率还提出了丁类与戊类放大器。,谐振功率放大器通常工作于丙类工作状态,属于非线性,4.1.1 谐振功率放大器的折线近似分析法,一、折线法,对谐振功率放大器进行分析计算,关键在于求出电流的直流分量Ic0和基频分量Icm1。,工程上都采用近似估算和实验调整相结合的方法对高频功率放大器进行分析和计算。折线法就是常用的一种分析法。,所谓折线法是将电子器件的特性曲线理想化,用一组折线代替晶体管静态特性曲线后进

4、行分析和计算的方法。,二、晶体管特性曲线的理想化及其特性曲线,晶体管实际特性和理想折线,根据理想化原理,晶体管的静态转移特性可用交横轴于VBZ的一条直线来表示(VBZ为截止偏压)。,若临界线的斜率为gcr,则临界线方程可写为 ic=gcrec,由上图可见,在饱和区,根据理想化原理,集电极电流 只受集电极电压的控制,而与基极电压无关。,则 ic =gc(ebVBZ) (ebVBZ),4.1.3 谐振功率放大器的工作原理,1、原理电路,谐振功率放大器的基本电路,晶体管的作用是在将供电电源的直流能量转变为交流能量的过程中起开关控制作用。,谐振回路LC是晶体管的负载,电路工作在丙类工作状态,外部电路关

5、系式:,晶体管的内部特性:,4.1.3 谐振功率放大器的工作原理,1、原理电路,谐振功率放大器的基本电路,谐振功率放大器转移特性曲线,谐振功率放大器转移特性曲线,故晶体管的转移特性曲线表达式:,谐振功率放大器转移特性曲线,故得:,必须强调指出,集电极电流ic虽然是脉冲状,但由于谐振回路的这种滤波作用,仍然能得到正弦波形的输出。,谐振功率放大器各部分的电压与电流的波形图如下页的图所示,高频功率放大器中各分电压与电流的关系,(a),高频功率放大器中各部分电压与电流的关系,2、谐振功率放大器的功率关系和效率,功率放大器的作用原理是利用输入到基极的信号来控制集电极的直流电源所供给的直流功率,使之转变为

6、交流信号功率输出去。,由前述所知:,有一部分功率以热能的形式消耗在集电极上,成为集电极耗散功率。,PDC=直流电源供给的直流功率; Po=交流输出信号功率; Pc=集电极耗散功率;,根据能量守衡定理:,故集电极效率:,由上式可以得出以下两点结论:,1) 设法尽量降低集电极耗散功率Pc,则集电极效率c自然会提高。这样,在给定PDC时,晶体管的交流输出功率Po就会增大;,如果维持晶体管的集电极耗散功率Pc不超过规定值,那么提高集电极效率c,将使交流输出功率Po大为增加。谐振功率放大器就是从这方面入手,来提高输出功率与效率的。,如何减小集电极耗散功率Pc,可见使ic在ec最低的时候才能通过,那么,集

7、电极耗散功率自然会大为减小。,晶体管集电极平均耗散功率:,要想获得高的集电极效率,谐振功率放大器的集电极电流应该是脉冲状。导通角小于90,处于丙类工作状态。,谐振功率放大器工作在丙类工作状态时c90,集电极余弦电流脉冲可分解为傅里叶级数:,直流功率:,输出交流功率:,Vcm 回路两端的基频电压 Icm1 基频电流 Rp 回路的谐振阻抗,放大器的集电极效率:,集电极电压利用系数,波形系数,通角c的函数;c越小g1(c)越大,越大(即Vcm越大或ecmin越小),c越小,效率c越高。因此,丙 类谐振功率放大器提高效率c的途径即为减小c角;使LC 回路谐振在信号的基频上,即ic的最大值应对应ec的最

8、小值。,基极偏置为负值;半通角c90,即丙类工作状态;负载为LC谐振回路。,故谐振功率放大器的工作特点:,3、集电极余弦电流脉冲的分解,当晶体管特性曲线理想化后,丙类工作状态的集电极电流脉冲是尖顶余弦脉冲。这适用于欠压或临界状态。,尖顶余弦脉冲,晶体管的内部特性为:,它的外部电路关系式,当t=0时,ic= ic max,ic=gc(ebVBZ),eb= VBB+Vbmcost,ec= VCCVcmcost,因此,ic max= gcVbm(1cos c),若将尖顶脉冲分解为傅里叶级数,由傅里叶级数的求系数法得,其中:,尖顶脉冲的分解系数,尖顶脉冲的分解系数,当c120时,Icm1/Icmax

9、达到最大值。在Ic max与 负载阻抗Rp为某定值的 情况下,输出功率将达 到最大值。这样看来, 取c=120应该是最佳通 角了。但此时放大器处 于甲乙类工作状态效率太 低,集电极效率仅为64%左右。,右图可见:,尖顶脉冲的分解系数,由于:,波形系数,由曲线可知:极端情况c=0时,,此时=1,c可达100%,因此,为了兼顾功率与效率,最佳通角取70左右。此时,集电极效率可达到85.9%。而通角为120时,集电极效率仅为64%左右。,一、 谐振功率放大器的动态特性,高频放大器的工作状态是由负载阻抗Rp、激励电压vb、供电电压VCC、VBB等4个参量决定的。,为了阐明各种工作状态的特点和正确调节放

10、大器,就应该了解这几个参量的变化会使放大器的工作状态发生怎样的变化。,4.2 高频谐振功率放大器的性能分析,当放大器工作于谐振状态时,它的外部电路关系式为,eb= VBB+Vbmcost,ec= VCCVcmcost,消去cost可得,,eb= VBB+Vbm,另一方面,晶体管的折线化方程为,ic = gc(ebVBZ),得出在icec坐标平面上的动态特性曲线方程:,= gd(ec V0),用截距法求动态特性,用虚拟电流求动态特性,图中示出动态特性曲线的斜率为负值,它的物理意义是:,从负载方面看来,放大器相当于一个负电阻,亦即它相当于交流电能发生器,可以输出电能至负载。,二、 功率放大器的负载

11、特性,如果VCC、VBB、vb 3个参变量不变,则放大器的工作状态就由负载电阻Rp决定。此时,放大器的电流、输出电压、功率、效率等随Rp而变化的特性,就叫做放大器的负载特性。,电压、电流随负载变化波形,1) vc、ic随负载变化的波形vc、ic随负载变化的波形如图所示,放大器的输入电压是一定的,其最大值为Vbemax,在负载电阻RP由小至大变化时,负载线的斜率由小变大,如图中123。不同的负载,放大器的工作状态是不同的,所得的ic波形、输出交流电压幅值、功率、效率也是不一样的。,2) 欠压、过压、临界三种工作状态, 临界状态 负载线和eb max正好相交于临界线的拐点。放大器工作在临界线状态时

12、,输出功率大,管子损耗小,放大器的效率也就较大。, 过压状态 放大器的负载较大,在过压区,随着负载Rp的加大,Ic1要下降,因此放大器的输出功率和效率也要减小。,电压、电流随负载变化波形,欠压状态 B点以右的区域。在欠压区至临界点的范围内,根据Vc=RpIc1,放大器的交流输出电压在欠压区内必随负载电阻RP的增大而增大,其输出功率、效率的变化也将如此。,根据上述分析,可以画出谐振功率放大器的负载特性曲线,负载特性曲线,欠压状态的功率和效率都比较低,集电极耗散功率也较大,输出电压随负载阻抗变化而变化,因此较少采用。但晶体管基极调幅,需采用这种工作状态。,过压状态的优点是,当负载阻抗变化时,输出电

13、压比较平 稳且幅值较大,在弱过压时,效率可达最高,但输出功率 有所下降,发射机的中间级、集电极调幅级常采用这种状 态。,负载特性曲线,临界状态的特点是输出功率最大,效率也较高,比最大效 率差不了许多,可以说是最佳工作状态,发射机的末级常 设计成这种状态,在计算谐振功率放大器时,也常以此状 态为例。,负载特性曲线,掌握负载特性,对分析集电极调幅电路、基极调幅电路的工作原理,对实际调整谐振功率放大器的工作状态和指标是很有帮助的。,三、 放大器工作状态的调整,调整欠压、临界、过压三种工作状态,大致有以下几种 方法:改变集电极负载Rp;改变供电电压VCC;改变偏压 VBB;改变激励Vb。,(1) 改变

14、Rp,但Vb、VCC、VBB不变 当负载电阻Rp由小至大 变化时,放大器的工作状态由欠压经临界转入过压。在临界 状态时输出功率最大。,(2) 改变VCC,但Rp、Vb、VBB不变 当集电极供电电压VCC由小至大变化时,放大器的工作状态由过压经临界转入欠压。,VCC变化时对工作状态的影响,在欠压区内,输出电流的 振幅基本上不随VCC变化 而变化,故输出功率基本 不变;而在过压区,输出 电流的振幅将随VCC的减 小而下降,故输出功率也 随之下降。,在过压区中输出电压随VCC改变而变化的特性为集电极调幅的实现提供依据;因为在集电极调幅电路中是依靠改变VCC来实现调幅过程的。改变VCC时,其工作状态和

15、电流、功率的变化如上图所示。集电极调幅电路就是调制信号使Vcc改变的调制方式。因此,集电极调幅要工作在过压区。,(3) VCC、Vbm、Rp不变,VBB变化。当VBB自负值向正值增大时,管子的导通时间加长, 使集电极电流脉冲的高度和宽度增大,放大器的工作状态由欠压进入过压状态。,谐振功率放大器转移特性曲线,谐振功率放大器转移特性曲线,当VBB由小到大变化时,Icm1、Ic0和响应的Vcm在欠压区迅速增大,而在过压区则缓慢增大。放大器的工作状态由欠压经临界转入过压状态。基极调幅就是调制信号使VBB改变的调制方式。因此,基极调幅要工作在欠压区。,由 eb= VBB+Vbmcost eb max=

16、VBB+Vbm,可见,当VBB由小到大变化时,eb max逐渐增大。,(4) VCC、VBB、Rp不变,Vbm变化。当Vbm自0向正值增大时,使集电极电流脉冲的高度和宽度增大,放大器的工作状态由欠压进入过压状态。,谐振功率放大器转移特性曲线,谐振功率放大器转移特性曲线,当Vbm由小到大变化时,Icm1、Ic0和响应的Vcm在欠压区迅速增大,而在过压区则缓慢增大。放大器的工作状态由欠压经临界转入过压状态。,由 eb= VBB+Vbmcost eb max= VBB+Vbm,可见,当Vbm由小到大变化时,eb max逐渐增大。,因此,当Vbm自0向正值增大时,使集电极电流脉冲的高度和宽度增大,放大

17、器的工作状态由欠压进入过压状态。谐振功放的放大特性是指放大器性能随Vbm 变化的特性。因此,在欠压区可以实现线性放大,在过压区则可作为限幅器。谐振功放的放大特性是指放大器性能随Vbm 变化的特性。,四、谐振功率放大器的计算,谐振功率放大器的主要指标是功率和效率。 以临界状态为例:,1) 首先要求得集电极电流脉冲的两个主要参量ic max和c,导通角c,集电极电流脉冲幅值Icm,2) 电流余弦脉冲的各谐波分量系数0(c)、1(c)、n(c)可查表求得,并求得个分量的实际值。,3) 谐振功率放大器的功率和效率,直流功率:,PDC=Ic0 VCC,交流输出功率:,集电极效率:,4) 根据,可求得最佳

18、负载电阻:,在临界工作时,接近于1,作为工作估算,可设定=1。,“最佳”的含义在于采用这一负载值时,调谐功率放大器的效率较高,输出功率较大。,1. 集电极馈电电路,根据直流电源连接方式的不同,集电极馈电电路又分为串联馈电和并联馈电两种。,一、直流馈电电路,4.3 高频功率放大器的电路组成,(1) 串馈电路 指直流电源VCC、负载回路(匹配网络)、功率管三者首尾相接的一种直流馈电电路。C1、LC为低通 滤波电路,A点为高频地电位,既阻止电源VCC中的高频成分影响放大器的工作,又避免高频信号在LC负载回路以外不必要的损耗。C1、LC的选取原则为1/ LC 回路阻抗1/10LC1/ c 10,(2)

19、 并馈电路 指直流电源VCC、负载回路(匹配网络)、功率管三者为并联连接的一种馈电电路。如图LC为高频扼流圈,C1为高频旁路电容,C2为隔直流通高频电容,LC、C1、C2的选取原则与串馈电路基本相同。,(3) 串并馈直流供电路的优缺点在并馈电路中,信号回路两端均处于直流地电位,即 零电位。对高频而言,回路的一端又直接接地,因此回路 安装比较方便,调谐电容C上无高压,安全可靠;缺点是在 并馈电路中,LC处于高频高电位上,它对地的分布电容较 大,将会直接影响回路谐振频率的稳定性;串联电路的特 点正好与并馈电路相反。由于集电极电流是脉冲形状,包括直流、基频及各次谐波分量,所以集电极馈电线路除了应有效

20、地将直流电压加在晶体管的集电极与发射极之间外,还应使基频分量流过负载回路产生输出功率,同时有效地滤除高次谐波分量。,2. 基极馈电电路,基极馈电电路也分串馈和并馈两种。,基极偏置电压VBB可以单独由稳压电源供给,也可以由集电极电源VCC分压供给。在功放级输出功率大于1W时,基极偏置常采用自给偏置电路。,基极馈电线路的几种形式,1. 级间耦合网络,多级功放中间级的一个很大问题是后级放大器的输入阻抗是变化的,是随激励电压的大小及管子本身的工作状态变化而变化的。,这个变化反映到前级回路,会使前级放大器的工作状态发生变化。此时,若前级原来工作在欠压状态,则由于负载的变化,其输出电压将不稳定。,对于中间

21、级而言,最主要的是应该保证它的电压输出稳定,以供给下级功放稳定的激励电压,而效率则降为次要问题。,二、输出回路和级间耦合回路,对于中间级应采取如下措施:,1) 使中间级放大器工作于过压状态,使它近似为一个恒压源。,2) 降低级间耦合回路的效率。回路效率降低后,其本 身的损耗加大。这样下级输入阻抗的变化相对于回 路本身的损耗而言就不显得重要了。中间级耦合回路 的效率一般为k=0.10.5,平均在0.3上下。也就是说,间级的输出功率应为后一级所需激励功率的310倍。,2. 匹配网络,输出匹配网络常常是指设备中末级功放与天线或其他负载间的网络,这种匹配网络有L型、型、T型网络及由它们组成的多级网络,

22、也有用双调谐耦合回路的。,输出匹配网络的主要功能与要求是匹配、滤波和高效率。,高频调谐功率放大器的阻抗匹配就是在给定的电路条件下,改变负载回路的可调元件,将负载阻抗ZL转换成放大管所要求的最佳负载阻抗Rp,使管子送出的功率P0能尽可能多的馈至负载。这就叫做达到了匹配状态,或简称匹配。,匹配网络应具有这样的几个特点: (1) 以保证放大器传输到负载的功率最大, 即起到阻抗匹配的作用; (2) 抑制工作频率范围以外的不需要频率, 即有良好的滤波作用; (3) 具有一定的通频带 。,几种常见的LC匹配(a) L型; (b) T型; (c) 型,(a) L-I型网络; (b) L-型网络,1. L型匹

23、配网络,对于L I型网络有,在负载电阻RP大于高频功放要求的最佳负载阻抗RLCR时,采用L-I型匹配网络,通过调整Q值,可以将大的RP变换为小的RS 以获得阻抗匹配(RS=RLCR)。谐振时,应有XS+XS=0。,对于L-型网络有,在负载电阻RS小于高频功放要求的最佳负载阻抗RLCR时,采用L- 型匹配网络,通过调整Q值,可以将小的RS变换为大的RP 以获得阻抗匹配(RP=RLCR)。谐振时,应有XP+XP=0。,下图所示的匹配网络具有电路简单、容易实现的优点,不足之处是电路的品质因数Q值很低(通常Q10),因此电路的滤波特性很差,所以在实际的发射机中,常常选用T型或型网络作匹配之用。,2.形

24、匹配网络,3.T形匹配网络,最常见的输出回路是复合输出回路,如图所示。,图中,介于电子器件与天线回 路之间的L1C1回路就叫做中介 回路;RACA分别代表天线的辐 射电阻与等效电容;Ln、cn为 天线回路的调谐元件,它们的 作用是使天线回路处于串联谐 振状态,以获得最大的天线回 路电流iA,亦即使天线辐射功 率达到最大。,复合输出回路(为了简化电路,省略了直流电源及辅助元件L、C、C等),这种电路是将天线(负载)回路通过互感或其他形式与集电 极调谐回路相耦合。,可以看到:两种输出网络,从晶体管集电极向右方看去,都应等效为一个并联谐振回路,如图所示。,等效电路,由耦合电路的理论可知,当天线回路调

25、 谐到串联谐振状态时,它反映到L1C1中 介回路的等效电阻为,因而等效回路的谐振阻抗为,改变M(晶体管电路由于元件小,实现可变M是较困难的,这时里为了便于说明问题,因而仍采用了改变M的讲法),就可以在不影响回路调谐的情况下,调整中介回路的等效阻抗,以达到阻抗匹配的目的。,耦合越紧,即互感M越大,则反映等效电阻越大,回路的等效阻抗也就下降越多。,4.4 宽带高频功率放大电路与功率合成电路,宽带高频功率放大电路采用非调谐宽带网络作为匹配网络, 能在很宽的频带范围内获得线性放大。常用的宽带匹配网络是传输线变压器, 它可使功放的最高频率扩展到几百兆赫甚至上千兆赫, 并能同时覆盖几个倍频程的频带宽度。

26、由于无选频滤波性能, 故宽带高频功放只能工作在非线性失真较小的甲类或乙类状态, 效率较低。所以, 宽带高频功放是以牺牲效率来换取工作频带的加宽。 ,4.4.1 传输线变压器1 宽频带特性普通变压器上、下限频率的扩展方法是相互制约的。为了扩展下限频率, 就需要增大初级线圈电感量, 使其在低频段也能取得较大的输入阻抗, 如采用高导磁率的高频磁芯和增加初级线圈的匝数, 但这样做将使变压器的漏感和分布电容增大, 降低了上限频率;为了扩展上限频率, 就需要减小漏感和分布电容, 减小高频功耗, 如采用低导磁率的高频磁芯和减少线圈的匝数, 但这样做又会使下限频率提高。 传输线变压器是基于传输线原理和变压器原

27、理二者相结合而产生的一种耦合元件。它是将传输线(双绞线、带状线或同轴线等)绕在高导磁率的高频磁芯上构成的, 以传输线方式与变压器方式同时进行能量传输。 ,继续,2. 宽频带传输线变压器的工作原理,休息2,休息1,传输线变压器是将两根等长的导线紧靠在一起,并绕在高导磁率低损耗的磁芯上构成的。最高工作频率可扩展到几百兆赫甚至上千兆赫。,传输线变压器与普通变压器在传输能量的方式上是不相同的,传输线变压器负载两端的电压不是次级感应电压,而是传输线的终端电压。,两根导线紧靠在一起,所以导线任意长度处的线间电容很大,且在整个线上均匀分布。其次,两根等长导线同时绕在高磁芯上,所以导线上均匀分布的电感量也很大

28、,这种电路通常又叫分布参数电路。,在传输线变压器中,线间的分布电容不影响高频能量的传输,电磁波以电磁能交换的形式在导线间介质中传播的。,(1) 1:1传输线变压器,继续,3. 常用传输线变压器分析,休息2,休息1,1:1传输线变压器,又叫倒相变压器。当传输线无损时,可以认为u1=u2和i1=i2。,u1,u2,如果传输线的特性阻抗:,传输线输出端的等效阻抗为:,输入端(1、3端)的等效阻抗为 :,为了实现传输线变压器与负载的匹配,要求:,为了实现信号源与传输线变压器的匹配,要求:,1:1传输线变压器,最佳匹配状态应该满足 :,满足最佳功率传输条件的传输线特性阻抗为:,1:1传输线变压器具有最大

29、的功率输出。但实际上,在各种放大电路中RL正好等于信号源内阻的情况是很少的。因此,1:1传输线变压器很少用作阻抗匹配元件,而更多的是用来作为倒相器,或进行不平衡-平衡以及平衡-不平衡转换。,(2) 1:4和4:1传输线变压器,继续,3. 常用传输线变压器分析,休息2,休息1,1:4传输线变压器是把负载阻抗降为1/4倍以便和信号源相匹配。在负载匹配的条件下,有u1=u2=u和,i1=i2=i,由于变压器的1端与4端相连,输入端1端与3端的电压为u,负载RL上的电压为u1+u2=2u,输入端1的电流为i1+i2=2i,且,u1,u1,u2,u2,2u,+2u-,传输线变压器的输入阻抗为 :,传输线

30、变压器把负载RL变换为RL/4,实现了1:4的阻抗变换。,如果把输入端和输出端对调就成为4:1传输线变压器。4:1传输线变压器把负载阻抗升高4倍和信号源匹配,由电压电流关系不难证明该变压器具有4:1的阻抗变换作用。,4.4.2 功率合成利用多个功率放大电路同时对输入信号进行放大, 然后设法将各个功放的输出信号相加, 这样得到的总输出功率可以远远大于单个功放电路的输出功率,这就是功率合成技术。 利用功率合成技术可以获得几百瓦甚至上千瓦的高频输出功率。 理想的功率合成器不但应具有功率合成的功能, 还必须在其输入端使与其相接的前级各率放大器互相隔离, 即当其中某一个功率放大器损坏时, 相邻的其它功率

31、放大器的工作状态不受影响, 仅仅是功率合成器输出总功率减小一些。 下图给出了一个功率合成器原理方框图。,由图可见, 采用7个功率增益为2, 最大输出功率为10 W的高频功放, 利用功率合成技术, 可以获得40W的功率输出。 其中采用了三个一分为二的功率分配器和三个二合一的功率合成器。 功率分配器的作用在于将前级功放的输出功率平分为若干份, 然后分别提供给后级若干个功放电路。 利用传输线变压器可以组成各种类型的功率分配器和功率合成器, 且具有频带宽、 结构简单、插入损耗小等优点, 然后可进一步组成宽频带大功率高频功放电路。 ,倍频器是一种输出频率等于输入频率整数倍的电路。广泛用在各种高稳定信号源

32、中,如发射机、频率合成器等设备中。采用倍频器,可以降低发射机主振器的频率,有利于稳频、提高发射机的工作稳定性和扩展发射机的波段。实现倍频器的电路很多,主要是丙类倍频器和参量倍频器两种。,4.5 丙类倍频器,4.5.1 丙类倍频器,4.5.2 变容二极管倍频器,本 章 小 节,高频谐振功率放大器电路可以工作在甲类、乙类或丙类状态。 相比之下丙类谐振功放的失真度虽不及甲类和乙类大,但输出功率大、效率高,节约能源, 所以是高频功率放大器中经常选用的一种电路形式。丙类谐振功放效率高的原因在于导通角小,也就是晶体管导通时间短,集电极功耗减小。 但导通角越小,将导致输出功率越小。 所以选择合适的角,是丙类谐振功放在兼顾效率和输出功率两个指标的一个重要考虑,综合考虑=70作为最佳导通角。3. 折线分析法是工程上常用的一种近似方法。 利用折线分析法可以对丙类谐振功放进行性能分析,得出它的负载特性、放大特性和调整特性。,4. 丙类谐振功放的输入回路采用自给负偏方式,输出回路有串馈和并馈两种直流馈电方式。 为了实现和前后级电路的阻抗匹配,可以采用LC元件,微带线和传输线变压器几种不同形式的匹配网络,分别适用于不同频的和不同工作状态。5. 谐振功率放大器属于窄带功放。 宽带高频功放采用非调谐方式,工作在甲类状态,采用具有宽频带特性的传输线变压器进行阻抗匹配,并可利用功率合成技术增大输出功率。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报