1、生活是数学的源泉,我们是数学学习的主人.,2 . 二次函数y=ax2+bx+c的图象是一条 ,它的对称轴是 ,顶点坐标是 . 当a0时,抛物线开口向 ,有最 点,函数有最 值,是 ;当 a0时,抛物线开口向 ,有最 点,函数有最 值,是 。,抛物线,上,小,下,大,高,低,1. 二次函数y=a(x-h)2+k的图象是一条 ,它的对称轴是 ,顶点坐标是 .,抛物线,直线x=h,(h,k),基础扫描,3. 二次函数y=2(x-3)2+5的对称轴是 ,顶点 坐标是 。当x= 时,y的最 值是 。4. 二次函数y=-3(x+4)2-1的对称轴是 ,顶点 坐标是 。当x= 时,函数有最 值,是 。5.二
2、次函数y=2x2-8x+9的对称轴是 ,顶点 坐标是 .当x= 时,函数有最 值,是 。,直线x=3,(3 ,5),3,小,5,直线x=-4,(-4 ,-1),-4,大,-1,直线x=2,(2 ,1),2,小,1,基础扫描,在日常生活中存在着许许多多的与数学知识有关的实际问题。如繁华的商业城中很多人在买卖东西。,如果你去买商品,你会选买哪一家的?如果你是商场经理,如何定价才能使商场获得最大利润呢?,26.3 实际问题与二次函数,第课时 如何获得最大利润问题,问题1.已知某商品的进价为每件40元,售价是每件 60元,每星期可卖出300件。市场调查反映:如果调整价格 ,每涨价1元,每星期要少卖出1
3、0件。要想获得6090元的利润,该商品应定价为多少元?,分析:没调价之前商场一周的利润为 元;设销售单价上调了x元,那么每件商品的利润可表示为 元,每周的销售量可表示为 件,一周的利润可表示为元,要想获得6090元利润可列方程 。,6000,(20+x),(300-10x),(20+x)( 300-10x),(20+x)( 300-10x) =6090,自主探究,已知某商品的进价为每件40元,售价是每件 60元,每星期可卖出300件。市场调查反映:如果调整价格 ,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元?,若设销售单价x元,那么每件商品的利润可表示为 元
4、,每周的销售量可表示为 件,一周的利润可表示为 元,要想获得6090元利润可列方程 .,(x-40),300-10(x-60) ,(x-40)300-10(x-60),(x-40)300-10(x-60)=6090,问题2.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?,合作交流,问题3.已知某商品的进价为每件40元。现在 的售价是每件60元,每星期可卖出300件。 市场调查反映:如调整价格 ,每降价一元,每星期可多卖出20件。如何定价才能使利润最大?,问题4.已知
5、某商品的进价为每件40元。现在 的售价是每件60元,每星期可卖出300件。 市场调查反映:如调整价格 ,每涨价一元, 每星期要少卖出10件;每降价一元,每星期 可多卖出20件。如何定价才能使利润最大?,解:设每件涨价为x元时获得的总利润为y元.,y =(60-40+x)(300-10x)=(20+x)(300-10x)=-10x2+100x+6000=-10(x2-10x ) +6000=-10(x-5)2-25 +6000=-10(x-5)2+6250,当x=5时,y的最大值是6250.,定价:60+5=65(元),(0x30),怎样确定x的取值范围,解:设每件降价x元时的总利润为y元.,y
6、=(60-40-x)(300+20x)=(20-x)(300+20x)=-20x2+100x+6000=-20(x2-5x-300)=-20(x-2.5)2+6125 (0x20) 所以定价为60-2.5=57.5时利润最大,最大值为6125元.,答:综合以上两种情况,定价为65元时可获得最大利润为6250元.,由(2)(3)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?,怎样确定x的取值范围,某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元
7、时,才能在半个月内获得最大利润?,解:设售价提高x元时,半月内获得的利润为y元.则y=(x+30-20)(400-20x)=-20x2+200x+4000=-20(x-5)2+4500当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元,我来当老板,牛刀小试,某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.若每个橙子市场售价约2元,问增种多少棵橙子树,果园的总产值最高,果园的总产值最高约为多少?,创新学习,反思
8、感悟,通过本节课的学习,我的收获是?,课堂寄语,二次函数是一类最优化问题的数学模型,能指导我们解决生活中的实际问题,同学们,认真学习数学吧,因为数学来源于生活,更能优化我们的生活。,1.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?,在上题中,若商场规定试销期间获利不得低于40%又不得高于60%,则销售单价定为多少时,商场可获得最大利润?最大利润是多少?,能力拓展,2.(09中考)某超市经销一种销售成本为每件40元的商品据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件设销售单价为x元(x50),一周的销售量为y件,(1)写出y与x的函数关系式(标明x的取值范围),(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?,(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?,中考链接,