1、2014高教社杯全国大学生数学建模竞赛承 诺 书我们仔细阅读了全国大学生数学建模竞赛章程和全国大学生数学建模竞赛参赛规则(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛
2、规则的行为,我们将受到严肃处理。我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的报名参赛队号为(8位数字组成的编号):所属学校(请填写完整的全名): 大连工业大学参赛队员 (打印并签名) :1. 潘世渡2. 王莎莎3. 王英鹏指导教师或指导教师组负责人 (打印并签名): 阎慧臻(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。)日期: 20
3、14年9 月14日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编 号 专 用 页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):1关于创意平板折叠桌的数学模型摘要本文用建立数学模型的方法进行描述创意平板折叠桌的动态变化过程,结合给定平板的部分尺寸来进行最优化的分析和设计。对于问题一,建立数字高程模型对桌脚边缘线进行平面投影,得到空间曲线在平面的垂直投影,利用投影求解相应的高程值。结合平面坐标,利用matlab程序拟合曲线,
4、此曲线即为投影曲线。用投影线的动态变化描述创意平板折叠桌的桌脚边缘线的动态变化。将得到的每条投影线上不同的点对应的不同高程值,由此把每条边缘线立体化。将给定的已知参数条件和相应的几何运动关系结合,构建小木条开槽长度的数学表达式,带入已知的参数,便可计算出合理的小木条开槽长度。对于问题二,建立层次分析模型来评估创意平板折叠桌的最优设计参数,凭借稳固性等设计因素结合已知的部分尺寸参数进行折叠桌的最优化设计。首先我们先对折叠桌进行受力分析和客观讨论,得出影响稳固性的众多的因素;然后我们对这些因素分组成不同方案,再对每个方案进行评估,最后讨论比较方案。选取最主要的方案因素,结合问题已给的条件构建数学表
5、达式。对所得到的数学表达式进行极值运算来确定最优解。对于问题三,结合问题一中的边缘线的动态变化和问题二中的稳固性的评估,建立模型数学关系表达式。应用所得表达式带入任意的折叠桌部分参数条件,便可实现动态变化过程和具有良好的稳固性的最优设计参数。结合公式自定义了一份设计参数,利用UG画出了三维实物仿真图和动态变化过程示意图。在这以截图为代表。论文的最后给出了相关模型和建立的数学表达式的评价,本论文的特色在于不仅应用了matlab数值分析软件来进行投影线的曲线拟合,还充分应用到了许多辅助的制图软件,如:autocad 、ug等。本次建模让应用了绘图软件加强了我们的绘图能力。我们充分了解到数学建模不仅
6、仅是单纯的数学计算,和高深的数学定义,它是一门结合多种学科的综合性学科。认识到数学模型在生活中的重要性,对于这些跨专业或者跨学科同时也锻炼了我们的自学能力,以及团队之间的协作能力。关键词: 格网dem投影 高程值 方案优化 3D仿真示意2一.问题的重述Rising Side Table:平板一秒钟变桌子桌面呈圆形,桌腿随着铰链的活动可以平摊成一张平板。桌腿由若干根木条组成,分成两组,每组各用一根钢筋将木条连接,钢筋两端分别固定在桌腿各组最外侧的两根木条上,并且沿木条有空槽以保证滑动的自由度桌子外形由直纹曲面构成,造型美观。试建立数学模型讨论下列问题:1.已知长方形平板尺寸为120 cm 50
7、cm 3 cm,每根木条宽2.5 cm,连接桌腿木条的钢筋固定在桌腿最外侧木条的中心位置,折叠后桌子的高度为53 cm。描述折叠桌的动态变化过程,在已知条件下给出此折叠桌的设计加工参数(例如,桌腿木条开槽的长度等)和桌脚边缘线的数学描述。2. 折叠桌的设计应做到产品稳固性好、加工方便、用材最少。对于任意给定的折叠桌高度和圆形桌面直径的设计要求,讨论长方形平板材料和折叠桌的最优设计加工参数,例如,平板尺寸、钢筋位置、开槽长度等。对于桌高70 cm,桌面直径80 cm的情形,确定最优设计加工参数。3.建立数学模型支撑公司开发折叠桌最优化设计软件的开发,并根据所建立的模型给出几个你们自己设计的创意平
8、板折叠桌。要求给出相应的设计加工参数,画出至少8张动态变化过程的示意图。3二问题分析问题1的分析:问题一属于给定条件的动态变化过程的分析和对相关变量进行数学描述的问题。解决动态分析问题一般需要通过建立适当模型来体现相关参数的联系,并由其中主要参数的动态变化来分析整个过程的动态变化。本文中的折叠桌动态变化的主要参数就是桌腿的边缘线的变化,边缘线随着折叠桌的不断折叠会呈现不同的形状。为了反映这一变化的过程,我们通过建立数字高程模型来得出变化过程中的边缘线的投影线,投影线的不同形状体现折叠桌的动态变化。而且还利用计算出来的不同投影点的高程值来确定不同边缘线的空间状态。解决数学描述相关问题一般将题目抽
9、象概括为方程、不等式、几何关系或图像之类的数学表达。我们通过投影线渐变图来数学描述桌腿边缘线,通过钢筋位置和平板尺寸等设计参数结合问题已经给的条件构建小木条开槽长度的数学表达式,并计算出合理的开槽长度。问题二的分析:问题二属于给定部分参数条件后去确定其他参数的理想值得最优化问题。解决这类最优化的问题首先得建立层次分析模型来分析可能影响被设计的物体运作状态的众多因素;其次在对被分析出来的各种因素进行方案的分组,对每个方案讨论可行性,选取最具可行性的方案组;最后在对选取的方案里的影响因素进行数学分析,确立它与已知和未知参数之间的数学关系。对于问题二中的折叠桌的最优化设计加工参数的确定,首先我们通过
10、对折叠桌进行受力分析和客观的讨论得出各种影响因素,然后对各种影响因素进行层次分析得出稳固性主要影响因素是钢筋的位置,再对钢筋位置与开槽长度、外侧木条的倾斜角度等参数构建函数表达式。通过对函数表达式极值分析求出最优参数。问题三的分析:问题三属于总结模型相关参数最优化公式的和对实际物体的仿真设计的问题。由问题一中的木条开槽长度求解过程和问题二中的稳固性分析得出的相关数学表达式,总结得出一套可由给定部分折叠桌部分参数求得其他运动参数的最优化公式。对于仿真设计实物模型的建立,我们可以自定义的一组最优化折叠桌参数,并通过UG来画出的具体实物3D运动仿真图和动态变化过程的示意图。4三模型的假设1.假设问题
11、一中给的折叠桌的相关尺寸都是真实可靠的。2.假设问题一中建立的数字高程模型中所利用垂直投影算法来求解相应的高程值都是准确的。3.假设所有牵扯到折叠桌设计的参数中小木条的宽度都是统一的2.5。4.假设每根桌腿和桌面与地面接触为全部接触(即桌面与地面在边缘桌腿方向的距离为桌腿的长度)。5.将圆桌面等效为一平滑的圆,忽略与桌腿之间由切割引起的锯齿形。6.在圆桌面分布的桌腿为均匀分布,而每根桌腿的长度都以中间线为准。四定义符号和变量1.长方形木板长 a 120cm,宽 b 50cm,高 c 3cm;木条的宽d=2.5cm;2. 圆桌面的半径为R;3. 桌腿与地面的摩擦系数为u;4. 桌腿上槽的加工长度
12、为l;5. 自锁:无论如何增加动力,机构也无法运动的情况,在本文建立的模型中是无论如何增加桌子上的压力桌子都将处于稳定状态,桌腿都将处于原来位置。五模型建立和求解问题一的模型已知长方形木板的长a=120cm,宽b=50cm,厚c=3cm,木条宽d=2.5cm,基于上述假设条件,又有每组桌腿中间最短木条的力学作用限制,木条数目只可能为基数,根据桌面尺寸条件限制,因此所得木条的根数,带入数据e=19,又有假设条件:假设每根木条为均匀分布在圆桌面,并且忽略边缘桌腿与最外端距离,将每根木条简化为一条细线后,将桌腿中间的线与桌面的中心相连整体圆被均分为38份,每份所对应的圆心角约为9.5,以两根钢筋穿过
13、位置做平面,由于折叠桌为对称模型因此以左侧桌腿为研究对象,将左侧钢筋做投影,投影到圆桌面上如下图:5图 1在图二中DE为固定钢筋,BC为钢筋在圆桌面上的投影,链接EC,BD,得投影面BDEC。A H为圆桌左侧的最中间的桌腿。过A点作垂线AF,连接FG再连接AG,因为BC为钢筋在圆桌面的投影,因此投影面与圆桌面相垂直。所以角AFG为直角。由以下条件桌面高度为53cm,木板厚3cm,钢筋所在位置是第一根桌腿的中间,由和可以得到桌腿对桌子高度的贡献为53-3=50cm;因为钢筋DE在最外桌腿的中间位置,由相似三角形原理可以求得CE的高度为25cm。由最外边的桌腿与地面之间所夹锐角的正弦sin= 60
14、50,由1cossin22 可得 611cos ,由内错角相等,可求得最外桌腿与桌面所在平面夹角的余弦值也为611,通过对最外面桌腿与钢筋与投影面建立直角三角形,可得出CG两点在垂直于BC平面的距离,距离长度为cos30 =16.58因为GF与刚刚所求距离相等,因此GF之间的距离也为16.58cm,将FG反向延长到圆周,和最短桌腿的顶部连接,可以得到HF,连接AF可以得到直角三角形AHF,边长HF=8.42cm,AF的长度为25cm,由勾股定理22 AFHFAH 6可以计算AH的长度。在上述表达式中已经求得HF=8.42cm,AF=25cm带入上述公式可以计算得出线段AH的长度。22 AFHF
15、AH = 22 2542.8 =26.38cm上述表达式中AH的长度已经求得,在原题中已知将钢筋固定在第一根桌腿的正中间,因此可以将钢筋的起始点视为桌腿的的中心位置(为了减少桌腿中间槽长度的加工)。将最外端的桌腿长度视为60cm;因此槽的长度可以如下计算:l=AH+R- 21 (最外端腿长)=26.38+25- 21 (60)=21.38cm因此经过计算可以得到桌腿间槽的长度为21.38cm。对于建立模型描述折叠桌的动态变化过程采用空间曲线在数字高程模型上的垂直投影算法。数字高程模型又称为DEM,它首先是将空间曲线和DEM投影到水平面上去,以建立两者之间的联系, 其次在水平面上求空间曲线的投影
16、线与DEM 投影面边界的交点, 求得交点后, 根据交点与投影面上已知点的位置关系, 采用插值的方法, 求得交点的高程值,然后按曲线的前进方向对这些交点进行排序, 最后顺次连接这些交点, 便可求得空间曲线在DEM上的投影线。在数字高程模型中又有基于网格的数字高程模型,又有基于三角形的数字高程模型,现在在本题中选用基于网格的数字高程模型。基于网格的数字高程模型说明:首先先选取一个平面(平面中必须有两点在同一高度平面),将空间曲线上的点投影到建立的平面上,然后将平面划分为多个小格,连接原本在平面上的两点,找到所连直线与网格之间的交点,通过差值法将平面点所在位置计算出来,再通过计算机软件绘制出所在位置
17、的空间图像。因为数字高程模型解决的为静态空间图形,因此在本题中以最后的终点位置为研究的对象,先将动态的变化过程转化为静态的分析,然后再模拟出平面投影变化的曲线,经过对曲线的分析从而得到空间曲线的运动状态。7图 2在上图中图形封闭图形abcda为阴影部分,A、B两点为两根着地桌腿的位置,以地面为水平面,建立如图坐标,其中C、D、E、F、G、H、I、G、K、L、M、N、为与所建坐标的纵轴相交,其余的点是与坐标横轴相交。在整个折叠桌由平板转化为折叠桌子的过程中,由于连接桌腿的是钢筋,钢筋不可发生弯曲,因此在整个过程中边缘的桌腿间的距离不发生改变,倘若将边缘一点的坐标设为固定值,则边缘另一边桌边代表的
18、坐标不发生改变,因此在整个动态变化过程中A、B两点不发生任何改变,因此取地面为研究发生平面,以A、B两点的连线为基准线。设横轴的间隔为D,在纵轴的间隔为D,横轴与纵轴的间隔大小不发生改变。由于A,B的横纵坐标(即其X, Y值)没发生改变, 无论发生什么样的变化Z值永远为0,格网的横向间隔D、纵向间隔D都是已知的,所以,只需在X方向自左至右遍历格网,便可以求得A点左右两侧的纵向格网线的索引Col1,Col2,在Y向上遍历格网, 可求得P1上下两侧的横向格网线的索引Row1,Row2,此刻P1所在的方格已经求得;同理,亦可求得P2所在的由Col3,Col4,Row3,Row4所围成的方格。此时,C
19、ol1,Col4,Row1,Row4围城的区域abcd,即线段P1P2的影响区域。在影响区域内,在0X方向上遍历格网线,可求纵向格网与线段P1P2的交点A,B,C,D;在OY方向上遍历格网线,可求横向格网与P 1P2的交点E, F. 此时投影线与格网线的交点已经求得,接下来需求交点的高程值。现以图三中的点D以及在点上下的与横线相交的点为例,加以说明。由于点D和其余两点位于Col2列上, 由以下公式, 变可获得其余两点在DEM上所对应的高程值所对应的公式为下式:D点上方的点: z = ZRow2, Cow2 = E levation (Row2, Co l2); H. z = ZR ow1,D点
20、下方的点:Cow2=Elevation(Row1,Col2)根据找到的程序代码,用MATLAB程序就可以将最最终位置确定建立的数字高程模型用MATLAB程序解决得到在图像,将第边缘桌腿与地面的夹角做为研究时间的变量,相同点的不同位置的投影坐标例如点A、F、Q、L、B,得到表格如下:8在平面上的投影坐标A F Q L B 0 0 14.9 11.9 25.2 19.3 37.8 12.3 50 0 0570 0 14.6 9.4 25.7 13.5 38.6 11.8 50 0 09.390 0 15.06 7.8 26.10 9.96 39.4 8.04 50 0 05.280 0 13.96
21、 2.3 25.8 5.6 38.46 3.54 50 0 04.110 0 14.01 0 24.97 0 40.01 0 50 0 00x y x y x y x y x y表格 1DEM垂直投影渐变图(变化投影线由下到上)图 39由程序运行得到对应的高程值坐标如下:A F Q L B 0 11.69 15.31 10.94 0 0570 8.183 10.717 7.658 0 09.390 5.845 7.655 5.470 0 05.280 2.298 3.062 2.188 0 04.110 0 0 0 0 00表格2得出的高程值可将每个投影线立体化,这样就避免了在特定区域出现投影
22、重合现象,使所建立模型更加标准化。问题二的模型层次分析法模型由于摩擦系数决定了桌子的受力,在一定的受力情况下,摩擦系数越大则桌子的稳定性越好;相同外力下最外边缘桌腿的倾斜角度越大桌子越稳定,而钢筋的位置又在一定程度上影响最外桌腿与地面的角度,开槽的长短影响了钢筋的位置;成本是企业对产品生产的首要考虑因素,决定了产品能否问世,平板使用的尺寸,在一定条件下影响了产品的成本。因此在整个问题分析过程中若要使设计做到产品稳固性好、加工方便、用材最少则至少需要考虑到桌子的成本,木材与地面之间的摩擦系数,钢筋所在的位置,桌腿上开槽的长度,平板的尺寸,产品的成本等因素,运用层次分析的方法将多种因素进行排列,最
23、终得到最优方案。 设 计 准 则平 板 材 料 最 优 设 计加 工 参 数 成 本 摩 擦 系 数 桌 腿 角 度 钢 筋 位 置 开 槽 长 度 平 板 尺 寸方 案 一 方 案 二 方 案 三图 410(1)方案的说明:方案一:用料最省,成本最低方案二:稳固性最高,结构最稳定方案三:加工方便,采用最方便的加工工艺(2)方案的设计:方案一:选择易获取,强度刚度符合价格低廉的木材作为原材料;设计的折叠桌平板尺寸尽量使面积最小;方案二:由摩擦自锁角可以知道,当桌腿与地面垂直方向的的角度(最外侧的桌腿)的正切值等于桌腿(木材)与地面之间的摩擦因数时,产生的摩擦力最大的桌子在这个时候是稳定的随着角
24、度的减少桌子的重心下降(由于物体中重心越低物体的稳定性越高),稳定性逐渐增加,但是由于相同高度要求下重心降低则所需木板长度增加成本随之增加,为了降低产品的成本,达到自锁角度则为最合适的角度。此时得到的设计参数就是稳固性最好的;(如图5)方案三:开槽设计成统一的宽度,便于加工,同时尽量使开槽在合理的情况下达到最短,以减少加工的工作量。AB A 点 的 受 力 分析 图:B 点 的 受 力 分析 图 : 力 F 分 解 示 意图 :F1 F F2F F1N fF1FN f 桌 面最 长腿图 5(3)方案的优化因为桌子的稳固性是我们应该考虑的首要因素,所以我们应该在方案二的前提下进行设计参数的确定,
25、这样才能使我们设计的桌子正常使用;在稳固性条件的前提下,我们可以得到各设计参数的关系,之后我们可以考虑材料的用料和成本,因为方案一中的选材直接决定了木材和地板之间的摩擦系数(本题中采用了松木和木质地板之间的摩擦系数,因为松木容易获得,在家具中应用普遍,而价格又相对低廉);开槽长短也对加工的工作量有一定的影响,所以我们在稳固性的前提下,可以使得开槽的长度达到最短(对槽长的表达式求最小值),这样就可以使得加工更加方便。11最优化加工参数计算产品稳固性好、加工方便、用材最少等基本要求,综合分析了平板尺寸,钢筋位置,开槽长度等设计参数,我们通过层次分析的办法,找到你最重要的参数是钢筋的位置,通过钢筋的
26、位置并结合稳固性最佳的基本要求可以确定其他的设计参数,从而得到最优化的设计方案。(1)关于折叠桌最短腿的讨论:桌子在终态稳定时,桌子的最短腿(中间的那条腿)会率先将钢筋卡住,从而使桌子的形态固定,而此时最短腿卡槽中的钢筋位置就是卡槽的下限,其余各腿的卡槽下限可以与最短腿的卡槽下限一齐即可。 开 槽 的 下 限开 槽 的 上 限图 6(2)关于最长腿的讨论:钢筋固定在最长腿上,当折叠桌呈现平板状态时,钢筋卡在各个腿卡槽的上限处,此时 各 腿 的 卡 槽 的 上 限 可 以 得 到 。12x最短腿最长腿桌面钢筋位置 aA BC D EF图 7(3)设计参数计算过程如下:槽长= )()sin()co
27、s( 22 axxxaRR 钢筋位置:最边缘桌腿X处平板尺寸公式: auh )sin(arctan 宽:80其中a=0(模型假设),公式可以改写成:槽长= xxxRR 22 sin)cos( 由表达式可知开槽长度和桌子的摩擦系数有关,摩擦系数越大,开槽越长,一般桌椅和地面的摩擦系数在0.4到0.6之间可以求得开槽的变化范围在:35.0246.4cm之间,变化范围比较大,所以需要考虑木材的材料:木材种类 价格/m3 摩擦系数松木 1300 0.5榆木 5000 0.45梨花木 6000 0.48柞木 1200 0.55紫檀木 4500 0.6表 3由分析可知当摩擦系数越大时,开槽的长度越小,工作
28、量少,加工也越方便。从成本和加工的角度考虑,可以选择松木和柞木作为加工的原材料,而且两种木材来源很广容易获得。13这里选取柞木为原材料分析;开槽长度的计算:=0.55由 8.11tantan 利用反函数求得 = o61 ;所得槽长l的公式为: xxxl 2cos402160040 对 )(xl 求导可知当X=39.3时,开槽长度最小:l =41.3cm钢筋的位置:距离桌腿根部39.3cm平板尺寸:长:80.5cm(考虑到a值的存在,这个尺寸为合理的) 宽:40cm问题三的模型主要思想在前两个问的基础上,可以根据客户提出的折叠桌高度、桌面边缘线的形状大小和桌脚边缘线的大致形状来给出具体的加工设计
29、参数。在第二问的基础上,建立:高度加工参数模型,求出给定高度的情况下的折叠桌加工参数1.问题分析:由第二问,使用柞木为加工原材料,现在高度有客户给出,我们要建立高度与折叠桌的设计参数之间的模型,当高度被给定的时候,我们可以通过高度和摩擦系数定出桌腿和地面之间的最小角度(90-)(为摩擦自锁角),桌腿与地面的实际角度需要大于等于(90-)才能保证折叠桌使用时的稳固性。角度的确定取决于客户给定折叠桌的高度和平板尺寸。当高度一定时,客户所需的平板尺寸(即桌子折成平板时的长度)越大时,桌腿与地面之间的角度越小,平板尺寸的最大值是当=90-时平板的尺寸。2.问题的求解首先,在给定高度H的前提下,可以计算
30、折叠椅的最短平板尺寸:L0 2)90sin( H客户在选择的平板尺寸必须小于最长平板尺寸:LL0通过给定的高度和平板尺寸可以计算桌腿和地面之间的角度:= )2/arcsin(LH得到后可以通过第二问的槽长公式对槽长进行计算:14槽长= xxxRR 22 sin)cos( 通过求极值(令槽长的一阶导数等于0)的办法可以得到最短槽长时的钢筋位置(X),再重新带入槽长公式中,即可求得槽长。3.参数的设计和选取首先根据客户指定的桌脚边缘线的大致形状应用到数字高程模型中求出相应的高程值。再利用matlab的的三围空间曲线拟合出具体的边缘线的空间状态。然后根据空间边缘线近似平面与水平面的所成角度来确定桌腿
31、与地面的夹角。假设桌面高度60cm;平板尺寸138cmX60cmX4cm;由已假设的条件参数运算可得:开槽长度= 30cm 桌腿长度= 69cm 桌腿数=23钢筋位于最外侧木条上,且距离木条与地面接触端的距离为30cm根据以上相关参数进行3d仿真设计,此过程用UG完成,仿真动态变化图示意图如下:15未变形前渐变过程116渐变过程2渐变过程317渐变过程4渐变过程518变形稳定状态过度变形不稳定状态19六:模型评价1模型的优点:对数字高程模型的评价:1.模型建立简单便捷,迅速解决问题中的变量,将立体值转化为投影坐标,使问题变得简单;2.平面精度较高,在一定程度上可以将实际问题化解的更为简单明了;
32、层次分析的优点:1.舍弃次要因素,考虑主要因素,使问题简单化;2.层次分析科学性较高,层次分析没有割断各个因素对结果的影响;3.层次分析中所需的定量数据较少,比较符合此题的应用;模型的缺点数学高程模型的评价:1.在实际生活中圆桌面并不能等效为一个平滑的圆;2.以平面投影来代替曲线的变化过程,不能直观看到变化曲线,可能存在投影相重合的状态;3.在计算过程中采用了插值计算法,投影法等多种方法,操作复杂;层次分析的缺点1.在本题中定量的数据少,定性的数据多,每个人的观点不同,不易使人折服;2.无法将特定的数值进行量化比较,使结果不真切;参考文献:1.崔铁军1利用等高线建立高质量数字地面模型A1中国地
33、理信息系统协会论文集C11999188188612.崔铁军,董延春,杨大洲1TIN到格网DEM的内插方法A1王家耀1地理信息系统与电子地图技术的进展C1长沙:湖南地图出版社,1999,33334113. 李善祥,孙一翎,李景镇. 数字散斑相关测量中亚像素位移的曲面拟合研究 J.光子学报,1999,28(7):638-640.4.朱小祥,范天锡,黄签.5神舟三号6成像光谱仪图像条带消除的一种方法.红外与毫米波学报,2004,23(6):451-454.5. 郭子祺, 卢刚, 王超, 等.海洋SAR图像小波S peck le 滤波及边缘信息提取.遥感学报,2001,5(6):428-433.6.蔡
34、莉、付灵钧、石勇进.企业研究开发流程再造的效果评价J.吉林工业大学自然科学学报,2001,5(7):289-3327. 曾建权. 层次分析法在确定企业家评价指标权重中的应用J. 南京理工大学学报自然科学版,2004,,4(6):328-339.8.全国中等卫生学校试用教材物理学编写组物理学M西安:陕西人民出版社,19798(6):448-463.9.同济大学理论力学教研室理论力学(上)M上海:同济大学出版社,20007(6):108-12320附录 matlab程序DEM数字高程内插程序usingSystem;usingSystem.Collections.Generic;usingSyste
35、m.ComponentModel;usingSystem.Data;usingSystem.Drawing;usingSystem.Text;usingSystem.Windows.Forms;usingSystem.IO;usingSystem.Data.OleDb;namespaceDEM内插程序 publicpartialclassDEM内插:Form publicDEM内插() InitializeComponent();/定义已知数据double, X = new double10,1, Y = new double10,1, Z = newdouble10,1;/X、Y、Z存储已知
36、点坐标/打开*.txt文件数据privatevoidOpenFile_Click(objectsender,EventArgse) if(ofdOpenFile.ShowDialog()=DialogResult.OK) StreamReader mystreamreader = newStreamReader(ofdOpenFile.FileName);/将文件载入到mystreamreaderstringLine;/读取的每行信息将记录在该字符串中21doubleTemp = new double30;/将每一行的信息存放在该一维数组中 inttemp=0;/将*.txt文件中的信息读如到
37、Temp一维数组中while(Line=mystreamreader.ReadLine()!=null)mystreamreader.Close();for(inti=0;i10;i+)/根据所读的数据赋值已知数据Xi,0=Temp3*i;Yi,0=Temp3*i+1;Zi,0=Temp3*i+2;/在窗体中显示已知数据ListViewItema;a=lst已知点坐标.Items.Add(Xi,0.ToString();a.SubItems.Add(Yi,0.ToString();a.SubItems.Add(Zi,0.ToString();privatevoidbutton1_Click(o
38、bjectsender,EventArgse) /定义变量doubleXp,Yp,Zp;/Xp,Yp,Zp为待求点坐标double,M=newdouble10,6;/系数阵double,P=newdouble10,10;/各点权值double,MT=newdouble6,10;/M系数阵转置double,MTP=newdouble6,10;/M的转置与P的乘积double,MTPM=newdouble6,6;/MTP与M的乘积double,temp=newdouble6,12;/临时矩阵double,MTPMR=newdouble6,6;/MTP与M的乘积的逆矩阵22double,MTPZ=n
39、ewdouble6,6;/MTP与Z的乘积double,XX=newdouble6,1;/X向量double _x = new double10, _y = new double10;/_x,_y存放已知点与待定点的坐标差,便于计算/计算过程/读取待定点平面坐标Xp=Convert.ToDouble(txtXp.Text);Yp=Convert.ToDouble(txtYp.Text);/计算_x,_yfor(inti=0;i10;i+)_xi=Xi,0-Xp;_yi=Yi,0-Yp;/计算系数矩阵for(inti=0;i10;i+) Mi,0=_xi*_xi;Mi,1=_xi*_yi;Mi,
40、2=_yi*_yi;Mi,3=_xi;Mi,4=_yi;Mi,5=1;/计算权阵for(inti=0;i10;i+)for(intj=0;j10;j+) if(i=j)Pi,j=1/Math.Sqrt(_xi*_xi+_yi*_yi);elsePi,j=0;/计算M的转置,存在MT中23for(inti=0;i6;i+)for(intj=0;j10;j+) MTi,j=Mj,i;/计算MT*P,存在MTP中for(inti=0;i6;i+)for(intj=0;j10;j+) MTPi,j=0;for(intk=0;k10;k+)MTPi,j+=MTi,k*Pk,j;/计算MTP*M,存在MT
41、PM中for(inti=0;i6;i+)for(intj=0;j6;j+) MTPMi,j=0;for(intk=0;k10;k+)MTPMi,j+=MTPi,k*Mk,j;/计算MTPM的逆矩阵,存在MTPMR中/把MTPM各值赋给tempfor(inti=0;i6;i+)for(intj=0;j6;j+) tempi,j=MTPMi,j;/在temp中加入初等方阵for(inti=0;i6;i+)for(intj=6;j12;j+) if(j=i+6)tempi,j=1;24elsetempi,j=0;/初等变换for(intl=0;l6;l+) if(templ,l!=1) double
42、bs=templ,l;templ,l=1;for(intp=l+1;p12;p+)templ,p/=bs;for(intq=0;q6;q+) if(q!=l) doublebs=tempq,l;for(intp=l;p12;p+)tempq,p-=bs*templ,p;elsecontinue;/得到MTPM的逆阵,存在MTPMR中for(inti=0;i6;i+)for(intj=0;j6;j+) MTPMRi,j=tempi,j+6;/计算MTP*Z,存在MTPZ中for(inti=0;i6;i+)25MTPZi,0=0;for(intk=0;k10;k+)MTPZi,0+=MTPi,k*
43、Zk,0;/MTPMR*MTPZ存在XX中for(inti=0;i6;i+) XXi,0=0;for(intk=0;k6;k+)XXi,0+=MTPMRi,k*MTPZk,0;/计算结束/显示待定点的高程值lblZp.Text=“Zp=“+XX5,0.ToString();privatevoideditorToolStripMenuItem_Click(objectsender,EventArgse)投影渐变线曲线拟合x=015253950y=012.319.311.90polyfit(x,y,2);f=polyval(ans,x);plot(x,y,o,x,f,-);t=0:0.1:50;f=polyval(ans,t);plot(x,y,o,t,f,-);f1=0.7*f;26plot(x,y,o,t,f,-,t,f1,-b);f2=0.5*f;plot(x,y,o,t,f,-,t,f1,-b,t,f2,-r)f3=0.2*f;plot(x,y,o,t,f,-,t,f1,-b,t,f2,-r,t,f3,-b);f4=0*f;plot(x,y,o,t,f,-,t,f1,-b,t,f2,-r,t,f3,-b,t,f4,-g);