收藏 分享(赏)

第五章-紫外光电子能谱.ppt

上传人:myw993772 文档编号:7257229 上传时间:2019-05-11 格式:PPT 页数:50 大小:515KB
下载 相关 举报
第五章-紫外光电子能谱.ppt_第1页
第1页 / 共50页
第五章-紫外光电子能谱.ppt_第2页
第2页 / 共50页
第五章-紫外光电子能谱.ppt_第3页
第3页 / 共50页
第五章-紫外光电子能谱.ppt_第4页
第4页 / 共50页
第五章-紫外光电子能谱.ppt_第5页
第5页 / 共50页
点击查看更多>>
资源描述

1、紫外光电子能谱(UPS) (Ultraviolet Photoelectron Spectroscopy),内容提纲,紫外光电子能谱的发展 紫外光电子能谱的原理 紫外光电子能谱的装置 紫外光电子能谱的分析方法 紫外光电子能谱的应用,前言,紫外光电子谱是近二十多年来发展起来的一门新技术,它在研究原子、分子、固体以及表面/界面的电子结构方面具有独特的功能。由紫外光电子谱测定的实验数据,经过谱图的理论分析,可以直接和分子轨道的能级、类型以及态密度等对照。因此,在量子力学、固体物理、表面科学与材料科学等领域有着广泛地应用。,光电子能谱学科的发展一开始就是从两个方面进行的。一方面是Siegbahn等人所

2、创立的X射线光电子能谱,主要用于测量内壳层电子结合能。另一方面是Tunner等人所发展的紫外光电子能谱,主要用于研究价电子的电离电能。这两种技术的原理和仪器基本相同,主要区别在于,前者采用X射线激发样品,后者采用真空紫外线激发样品由于紫外线的能量比较低,因此它只能研究原子和分子的价电子及固体的价带,不能深入原子的内层区域。但是紫外线的单色性比X射线好得多,因此紫外光电子能谱的分辨率比X射线光电子能谱要高得多。这两方面获得的信息既是类似的,也有不同之处因此在分析化学、结构化学和表面研究已经材料研究等应用方面,它们是互相补充的。,紫外光电谱的理论基础仍然是光电效应,UPS谱仪的设计原理与XPS谱仪

3、基本一样,只是将X射线源改用紫外光源作为激发源。 UPS谱仪主要有两种类型,一种是适用于气体UPS分析的,一种是用于固体UPS分析的。 UPS谱仪中所用的紫外光是由真空紫外灯提供的。,UPS谱仪,UPS谱仪,用于产生紫外光的气体一般是He, Ne等。,真空紫外灯的结构,UPS谱仪,He I线是真空紫外区中应用最广的激发源。这种光子是将He原子激发到共振态后,由激发态He1s2p(1P)向基态1s1s(1S)跃迁产生的,其它次要谱线来He1snp(1P)向基态的跃迁。自其自然宽度仅几个meV。He的放电谱没有其它显著干扰,可不用单色仪。 He II线来自单电离的He原子受激发产生的,一般工作条件

4、下,强度很小(1%)。但为了研究整个价壳层电子,需要使用更高能量的辐射源,往往采用He II线。,紫外光电子能谱的原理,紫外光电子能谱测量与分子轨道能紧密相关的实验参数电离电位 原子或分子的第一电离电位通常定义为从最高的填满轨道能级激发出一个电子所需的最小能量 第二电离电位定义为从次高的已填满的中性分子的轨道能级激发电一个电子所需的能量,紫外光电子能谱的原理,能量为 hv 的入射光子从分子中激发出一个电子以后,留下一个离子,这个离子可以振动、转动或其它激发态存在。如果激发出的光电子的动能为 Ek,则:Ek = h EB Er Ev Et 其中Ev为振动能,Er为转动能,Et为平动能。Ev的能量

5、大约是0.1eV,Er 的能量更小,大约是0.001eV,因此 Ev 和 Er 比 EB小得多。但是用目前已有的高分辨紫外光电子谱仪(分辨能力约10-25毫电子伏),容易观察到振动精细结构。,分子的能级中有不同的振动能级。基态分子多处于最低的电子能级和振动能级(E=0、V=0)。,电子可由基态跃迁到激发态的不同振动能级,电子跃迁一定伴随着能量较小变化的振动能级和转动能级的跃迁。,E0、E1为电子能级,其中还有不同的振动能级V0,V1,V2,V3 ,跃迁时: E0V0 E1V0E0V0 E1V1E0V0 E1V2,E0V0 E1V0E0V0 E1V1E0V0 E1V2,紫外光电子能谱的原理,在X

6、射线光电子能谱(XPS)中,气体分子中原子的内层电子激发出来以后,留下的离子也存在振动和转动激发态,但是内层电子的结合能比离子的振动能和转动能要大得多,而且X射线的自然宽度比紫外线大得多,所以通常不能分辨出振动精细结构,更无法分辨出转动精细结构。 用X射线和电子激发只有在特殊情况中才能产生可观察的振动结构,即在自电离和俄歇谱线的情况中(例如CO的)才可观察到。 因此目前在各种电子能谱法中,只有紫外光电子能谱才是研究振动结构的有效手段。,紫外光电子能谱的原理,根据双原子分子的非谐振子模型,分子离子的振动能等于:其中n为离子态的振动量子数,h为普朗克常数,是非谐振常数,是振动频率,k是振动的力常数

7、,u是体系的折合质量在这里k是键强度的量度,紫外光电子能谱的原理,假如电离时一非键电子被移去,键强度只改变一点,所以k和以及振动能级之间的能量间距rc都几乎维持不变,核间距离也将不受影响 如果移去一个成键电子,k和将减少, rc将增加 如果移去一个反键电子,k和将增加, rc将减少 当电子被激发到较高的分子能级上而没有移去,这时也将发生类似的效应,紫外光电子能谱的原理,从分子最高已占有的轨道激发出一个电子以后生成的基态分子离子是AB(X),从次高轨道激发出一个电子以后生成的分子离子是AB(A),AB(B)等它们的相应的电离能分别是IP1, IP2, IP3。这些离子可以有振动态: p0,pl,

8、p2等等。,CO的光电子能谱及其相关能级图,CO+的基态( ),CO+第一激发态( ),CO+第二激发态( ),自旋轨道耦合的结果导致其能级发生分裂,形成两个具有不同能量的态,例如轨道量子数为 ,即得,它们的能量差值:,自旋轨道耦合,自旋自旋耦合,对开壳层分子,当其它成对电子中一个被激发发射出来后,留下一个未配对电子。与原来未配对电子的自旋相互作用可出现平行和反平行二种情况,从而有二种不同能量状态,并使光电子能量也不同,引起谱线的分裂。例如O2分子,O2和O2的分子轨道示意图,H2, HD和D2分子的光电谱图,表现了由于振动状态的不同而出现的谱峰的变化。,紫外光电子能谱的原理,紫外光电子能谱的

9、原理,共有14个峰; 对应于氢分子离子的各个振动能级; 各个峰之间的距离与理论计算所得的结果很一致 根据振动精细结构可以得到氢分子离子的振动频率 用高分辨的紫外光电子能谱在个别情况下已能显示出转动结构,紫外光电子能谱的原理,是氢分子离子振动量子数为3和4的振动能级的峰 在这两个峰中显示出转动结构; 箭头所示之处指明某些转动峰的位置,但是目前还不能分辨出单个转动峰,与第一电离电位相关联,则称为“第一谱带“,在谱图上它出现于高动能端。谱带与第二电离电位相关联,则称为“第二谱带”。 第一谱带I1包含几个峰,这些峰对应于振动基态的分子到不同振动能级的离子的跃迁。 离子的振动频率,分子对应的振动频率0;

10、若成键电子被发射出来则0。 若发射的是反键电子,则0,紫外光电子能谱的原理,紫外光电子能谱的原理,非键或弱键电子峰的化学位移 在X射线光电子能谱中,当原子的化学环境改变时一般都可以观察到内层电子峰的化学位移。 紫外光电子能谱主要涉及分子的价层电子能级,成键轨道上的电子往往属于整个分子,它们的谱峰很宽,在实验上测量化学位移很困难。 但是,对于非键或弱键轨道中电离出来的电子,它们的谱峰很窄,其位置常常与元素的化学环境有关,这是由于分子轨道在该元素周围被局部定域。,谱带的形状往往反映了分子轨道的键合性质 谱图中大致有六种典型的谱带形状,见左图。,非键或弱键轨道,成键或反键轨道,强的成键或反键轨道,紫

11、外光电子能谱的特征,谱带的形状和位置,如光电子来自非键或弱键轨道,分子离子的核间距离与中性分子的几乎相同,绝热电离电位和垂直电离电位一致,这时谱图上出现一个尖锐的对称的峰。在峰的低动能端还会存在一个或两个小峰。它们对应于v1,v=2等可能的跃迁,见图的I。 若光电子从成键或反键轨道发射出来,绝热电离电位和垂直电离电位不一致,垂直电离电位具有最大的跃迁几率,因此谱带中相应的峰最强,其它的峰较弱,见图的II和III。 从非常强的成键或反键轨道发生的电离作用往往呈现缺乏精细结构的宽谱带,见图中IV。缺乏精细结构的原因是振动峰的能量间距过小;有时振动精细结构叠加在离子离解造成的连续谱上,形成图中的谱带

12、V。 若分子被电离以后生成的离子的振动类型不止一种,谱带呈现一种复杂的组合带,见谱带VI。,振动结构 双原子分子的势能曲线。最下边的代表基态的势能曲线,中间的代表某一个离子态,它的平衡几何构型与基态接近。最上边的代表几何构型发生较大改变的离子态。,谱带的位置代表谱带的能量,所以也代表分子轨道的电离电位 右图是某些轨道的电离电位范围 这种图可以帮助我们预测较复杂的分子轨道电离电位和解释谱图中的峰所对应的轨道性质,电子接受或授与效应,轨道电离电位与轨道环境有关,必须考虑电子接受或授与原子或原子团的影响。考虑这种影响可用几种方法。 非键电子通常高度定域在分子中的特定原子上,其能量很大程度上取决于该原

13、于的电负性。根据元素电负性的不同,监视特定谱带的电离电位随各种取代基而变化,有可能推测谱带的性质和起源。 如果分子中一原子被电负性更高的原子取代,则将引起与该原子及其邻近原子有关分子轨道的电离电位增加。 如果一原子被另一电负性较低原子取代,则情况相反。 在一系列分子WX,WY,WZ中,电负性相关可用来预测与X,Y,Z原于有关的轨道电离电位。,仪器设备,紫外光电子能谱和射线光电子能谱都是分析光电子的能量分布,因此它们的仪器设备是类似的,主要的区别在于前者的激发源是真空紫外线,后者是X射线。 多数仪器上都是两种光源齐备。 因为除激发源外仪器的其它部件与射线光电子谱仪相同。,激发光源,激发源是用惰性

14、气体放电灯,这种灯产生的辐射线几乎是单色的,不需再经单色化就可用于光电子谱仪。最常用的是氦共振灯。 用针阀调节灯内纯氦压力,当压力大约在0.1-1托时用直流放电或微波放电使惰性气体电离。这时灯内产生带特征性的桃色的等离子体,它发射出氦I共振线。该线光子能量为21.22电子伏。 氦I线的单色性好(自然宽度约0.005电子伏),强度高,连续本底低,它是目前用得最多的激发源。,氦 I 线有很多优点,但能量较低,它不能激发能量大于21eV的分子轨道电子。 有一种方法是改变氦灯的放电条件,例如采用较高的电压和降低氦气的压力,这时除氦I线外还产生氦II共振线(40.8eV)。 如果用这种源激发样品,记录到

15、的光电子谱图中就有样品分子与584及304两种光子相互作用所产生的谱带。 采用同步加速器的同步辐射,它可提供波长范围600-40之间的高强度同步辐射。经过单色化后用来激发样品。同步辐射的使用填补了能量较低的紫外线与能量较高的软X射线之间的空隙。,紫外光电子能谱的应用,紫外光电子能谱通过测量价层光电子的能量分布,得到各种信息。 它最初主要用来测量气态分子的电离研究分子轨道的键合性质以及定性鉴定化合物种类。 近年来,它的应用已扩大到固体表面研究。,测量电离电位 用紫外光电子能谱可测量低于激发光子能量的电离电位,和其它方法比较它的测量结果是比较精确的。 紫外光子的能量减去光电子的动能便得到被测物质的

16、电离电位。 对于气态样品来说,测得的电离电位相应于分子轨道的能量。分子轨道的能量的大小和顺序对于解释分子结构、研究化学反应是重要的。 在量子化学方面,紫外光电子能谱对于分子轨道能量的测量已经成为各种分子轨道理论计算的有力的验证依据。,因为Ar分子最外层是封闭价电子壳层为P6。当一个电子被激发后,外壳层变为P5。由自旋角动量和轨道角动量耦合有2P3/2和2P1/2,在光电子能谱图上表现为两个锐峰。,Ar的He I光电子能谱图,Ar分子中电子的电离能,H2分子仅有两个电子,占据在分子轨道上,因此只产生一条谱带。而谱带中的一系列尖锐的峰,是电离时激发到H2+的不同的振动状态产生。,H2分子的He I

17、紫外光电子谱图,H2分子的电离能和振动能,N2分子从外壳层到内壳层,可电离的占据分子轨道能级的次序为g , u和u等。从这些轨道上发生电子电离,则得到的离子的电子状态分别对应于图中的三条谱带。谱峰线产生于离子的振动能级的不同激发。,N2分子的HeI紫外光电子谱图,N2分子的电离能,(CH3)3N是一个多原子分子,除在8.4 eV附近有一条明显的谱带对应于N原子的弧对非键电子的电离外,其余的谱带因相互重叠而无法清楚地分辨,至于振动峰线结构更是难以区分。,(CH3)3N的HeI光电子能谱图,多原子分子的电离能,研究化学键 研究谱图中各种谱带的形状可以得到有关分子轨道成键性质的某些信息 例如前面已提

18、到,出现尖锐的电子峰能表明有非键电子存在,带有振动精细结构的比较宽的峰可能表明有键存在等,位于15.58电子伏的g能级和位于18.76电子伏的u能级是非键的,u能级是成键的。 经典的概念认为,15.58电子伏的g (2P)能级是成强健的,这种看法是不正确的。,CO分子中有10个价电子,和氮分子有等电子结构,因此它的紫外光电子谱和氮分子的很相似 谱图中的第一谱带很尖锐,说明g (2P)轨道比氮有更少的成键性质,而u (2S)轨道虽然理论上是非键的,它却稍微呈现某种成键性质。2P轨道成强键,它的谱带清楚地显示出振动精细结构 CO分子的三个谱带的电离电位分别是14.01,16.53和19.68电子伏

19、,定量分析,当用X射线做激发源时,谱中峰的相对强度通常正比于分子中原子的相对数目 但是用紫外光激发时,虽然峰的相对强度也与原子的相对数目有关,但有许多因素影响谱线强度,所以,一般说来,进行元素定量分析是比较困难的,固体表面吸附作用,紫外光电子能谱的应用已迅速地扩大到固体表面研究,例如研究表面吸附和表面能态等,并日益成为这些研究领域中的重要工具。 在研究表面吸附时,除要了解吸附物质的性质以外,还希望了解吸附物质与表面是否发生相互作用以及相互作用的程度; 例如了解是属于化学吸附还是物理吸附。紫外光电子能谱有可能回答这一问题。,用紫外光电子能谱研究表面吸附时,必须把吸附分子的谱与自由分子的谱加以比较

20、。 主要困难是它们的参考能级不一样。气体分子的价电子能级的电离电位是用自由电子能级作参考的,而对于吸附态则是用Femi能级作参考的。吸附分子的电离电位应加上一个合理的功函数值才可与自由分于相比较。,HeI和HeII线激发的清洁的铂片和吸附有CO的铂片的紫外光电子能谱CO吸附层大约是0.4个单层,此时的功函数是5.6电子伏,在9.1eV处宽的不对称的峰包含两个CO分子轨道能级,由于它们与表面相互作用,故这两个能级都被加宽了 8.8eV处的能级对应于CO的2p轨道,9.1eV处的能级对应于2p轨道,117eV处的峰对应于2s轨道 以自由电子能级作参考,还需要加上功函数的值,则对应于这三个轨道的能量分别是13.6,14.2和17.3eV自由分子中CO的这三个分子轨道的能量为14.0,l 6.9和19.7eV因此,吸附态的CO分子的2p和2s能级分别位移了2.2eV和2.4eV,而2p能级的位移较小 可说明CO在铂表面属于化学吸附,吸附分子与表面原子发生了某种程度的成健作用,即生成了化学吸附键,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报