收藏 分享(赏)

机电一体化中的电机控制与保护 11.doc

上传人:nacm35 文档编号:7140528 上传时间:2019-05-07 格式:DOC 页数:22 大小:532.50KB
下载 相关 举报
机电一体化中的电机控制与保护 11.doc_第1页
第1页 / 共22页
机电一体化中的电机控制与保护 11.doc_第2页
第2页 / 共22页
机电一体化中的电机控制与保护 11.doc_第3页
第3页 / 共22页
机电一体化中的电机控制与保护 11.doc_第4页
第4页 / 共22页
机电一体化中的电机控制与保护 11.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、 学校代码:43708学 号:莱芜职业技术学院毕业论文机电一体化中的电机控制与保护系 别: 机电系专 业: 机电一体化学生姓名: 臧 彬指导教师: 卜范骞入学时间:2008 年 9 月 论文完成时间:2011 年 3 月内 容 摘 要依据机电一体化技术的发展前景,提出一种新型电动执行机构的设计方案,详细介绍了该执行机构各功能元件的选型与设计、阀位及速度控制原理以及各种关键问题的解决方法。该执行机构将阀门、伺服电机、控制器合为一体,采用 8031 单片机、变频技术实现了阀门的动作速度和位置控制,解决了阀门的精确定位、阀门柔性开关、极限位置判断、电机保护及模拟信号隔离等技术问题。现场运行情况表明,

2、该电动执行机构具有动作快、保护完善以及便于和计算机通讯等优点,充分利用了机电一体化技术带来的方便快捷。关键词:电机与电器控制电路 电动机阀门 继电器保护 机电一体化技术总结目 录内 容 摘 要.2 引 言.3第 1 章机电一体化中电动执行机构的硬件设计及工作原理41.1 系统工作原理 41.2 控制系统各功能原件的选型与设计.51.3 交流电机正反转控制原理71.4 交流电机的星一三角形启动.9第 2 章 机电一体化中阀位及速度控制原理.10第 3 章 机电一体化中继电器保护的现状与发展123.1 继电保护发展现状 123.2 继电保护的未来发展133.2.1 计算机化. .143.2.2 网

3、络化 . .153.2.3 保护、控制、测量、数据通信一体化. 173.2.4 智能化. 17结束语18附录:电器控制原理图 119附录:电器控制原理图 2 20第 1 章机电一体化中电动执行机构的硬件设计及工作原理作原理电动执行机构控制系统原理框图如图 2-1 所示。智能执行机构从结构上主要分为控制部分和执行驱动部分。 控制部分主要由单片机、PWM 波发生器、IPM 逆变器、A/D、D/A 转换模块、整流模块、输入输出通道、故障检测和报警电路等组成。执行驱动部分主要包括三相伺报电机和位置传感器。图 1-1 电机执行机构控制系统框图1.1 系统工作原理 霍尔电流、电压传感器及位置传感器检测到的

4、逆变模块三相输出电流、电压及阀门的位置信号,经 A/D 转换后送入单片机。单片机通过 8255 控制 PWM 波发生器,产生的 PWM 波经光电耦合作用于逆变模块 IPM,实现电机的变频调速以及阀位控制。逆变模块工作时所需要的直流电压信号由整流电路对 380V 电源进行全桥整流得到。 1.2 控制系统各功能元件的选型与设计1)单片机 选用 INTEL 公司生产的 8031 单片机,它主要通过并行 8255 口担负控制系统的信号处理:接收系统对转矩、阀门开启、关闭及阀门开度等设定信号,并提供三相 PWM 波发生器所需要的控制信号;处理 IPM 发出的故障信号和报警信号;处理通过模拟输入口接收的电

5、流、电压、位置等检测信号;提供显示电动执行机构的工作状态信号;执行控制系统来的控制信号,向控制系统反馈信号; 2)三相 PWM 波发生器 PWM 波的产生通常有模拟和数字两种方法。模拟法电路复杂,有温漂现象,精度低,限制了系统的性能;数字法是按照不同的数字模型用计算机算出各切换点,并存入内存,然后通过查表及必要的计算产生PWM 波,这种方法占用的内存较大,不能保证系统的精度。为了满足智能功率模块所需要的 PWM 波控制信号,保证微处理器有足够的时间进行整个系统的检测、保护、控制等功能,文中选用 MITEL 公司生产的 SA8282 作为三相 PWM 发生器。SA8282 是专用大规模集成电路,

6、具有独立的标准微处理器接口,芯片内部包含了波形、频率、幅值等控制信息。 3)智能逆变模块 IPM 为了满足执行机构体积小,可靠性高的要求,电机电源采用智能功率模块 IPM。该执行机构主要适用功率小于 55kW 的三相异步电机,其额定电压为 380V,功率因数为 075。经计算可知,选用日本产的智能功率模块 PM50RSA120 可以满足系统要求。该功率模块集功率开关和驱动电路、制动电路于一体,并内置过电流、短路、欠电压和过热保护以及报警输出,是一种高性能的功率开关器件。 4)位置检测电路 位置检测电路是执行机构的重要组成部分,它的功能是提供准确的位置信号。关键问题是位置传感器的选型。在传统的电

7、动执行机构中多采用绕线电位器、差动变压器、导电塑料电位器等。绕线电位器寿命短被淘汰。差动变压器由于线性区太短和温度特性不理想而受到限制。导电塑料电位器目前较为流行,但它是有触点的,寿命也不可能很长,精度也不高。笔者采用的位置传感器为脉冲数字式传感器,这种传感器是无触点的,且具有精度高、无线性区限制、稳定性高、无温度限制等特点。 5)电压、电流及检测 检测电压、电流主要是为了计算电机的力矩,以及变频器输出回路短路、断相保护和逆变模块故障诊断。由于变频器输出的电流和电压的频率范围为 050Hz,采用常规的电流、电压互感器无法满足要求。为了快速反映出电流的大小,采用霍尔型电流互感器检测 IPM 输出

8、的三相电流,对于 IPM 输出电压的检测采用分压电路。如图 2-2 所示。 图 1-2 IPM 输出电流、电压检测6)通讯接口 为了实现计算机联网和远程控制,选用 MAX232 作为系统的串行通讯接口,MAX232 内部有两个完全相同的电平转换电路,可以把 8031 串行口输出的 TTL 电平转换为 RS232 标准电平,把其它微机送来的 RS232 标准电平转换成 TTL 电平给 8031,实现单片机与其它微机间的通讯。 7)时钟电路 时钟电路主要用来提供采样与控制周期、速度计算时所需要的时间以及日历。文中选用时钟电路 DS12887。DS12887 内部有 114 字节的用户非易失性 RA

9、M,可用来存入需长期保存的数据。 8)液晶显示单元 为了实现人机对话功能,选用 MGLS12832 液晶显示模块组成显示电路。采用组态显示方式。通过菜单选择,可分别对阀门、力矩、限位、电机、通讯和参数等信号进行设置或调试。并采用文字和图形相结合的方式,显示直观、清晰。 9)程序出格自恢复电路 为了保证在强干扰下程序出格时系统能够自动地恢复正常,选用 MAX705 组成程序出格自恢复电路,监视程序运行。如图 2-3 所示,该电路由 MAX705、与非门及微分电路组成。 图 1-3 程序出路自恢复电路工作原理为:一旦程序出格,WDO 由高变低,由于微分电路的作用,由“与非”门输入引脚 2 变为高电

10、平,引脚 2 电平的这种变化使“与非”门输出一个正脉冲,使单片机产生一次复位,复位结束后,又由程序通过 P10 口向 MAX705的 WDI 引脚发正脉冲,使 WDO 引脚回到高电平,程序出格自恢复电路继续监视程序运行。1.3 交流电机正反转控制原理在生产实际过程中,常要求用一台电动机的正反转控制方向相反的两个运动,如小车的左行、右行,机械手的上升、下降等。本设计对交流电机的正反转控制的电器原理图如下所示图 1-4 交流电机正反转控制的电器原理图要实现三相鼠笼型异步电动机的正反转控制,只要把三相线当中的任意两项调换一下位置就可以了。如图 1-4 所示:假如接触器 KM1 闭合时电动机正转,则当

11、接触器 KM1 断开,接触器 KM2 闭合时,电动机就会反转。从图中我们可以看出:要改变三相交流电机的旋转方向,只需要任意交换其中两项就可以达到目的。图中各元器件的作用如表所示:连接的外部设备 功能说明SB1 停止命令SB2 电机正转命令SB3 电机反转命令FR 常开 电动机过载保护KM1 控制电机正转KM2 控制电机反转1.4 交流电机的星一三角形启动对于正常运行时定子绕组接成三角形的鼠笼型异步电动机,在启动时,为了保护电动机,一般采用 Y/降压启动方法来达到限制启动电流的目地。Y/降压启动的原理如图 1 所示:在启动过程中将电动机定子绕组接成星型,即接触器 KMY 闭合。此时电动机每相绕组

12、承受的电压为额定电压的 1/3,启动电流为三角形接法时启动电流的 1/3。接触器 KMY 闭合的同时时间继电器开始定时,定时时间到,接触器 KMY 断开,接触器 KM闭合。电动机绕为三角形接法,进入正常运行阶段。控制电路要有自锁、互锁、定时等常用电路,要求合上启动(正转或反转)按钮后,电机先作星型连接启动,经延时 6 秒后自动换成三角形连接启动。按下停止,电机停转。按下反转按钮后,进行反转的 Y/启动。要求正反转互锁、Y/互锁。第 2 章 机电一体化中阀位及速度控制原理阀位及速度控制原理框图如图 2-1 所示图 2-1 阀位及速度控制原理框图采用双环控制方案,其中内环为速度环,外环为位置环。速

13、度环主要将当前速度与速度给定发生器送来的设定速度相比较,通过速度调节器改变 PWM 波发生器载波频率,实现电机的转速调节。速度调节器采用模糊神经网络控制算法(具体内容另文叙述)。外环主要根据当前位置速度的设定,通过速度给定发生器向内环提供速度的设定值。由于大流量阀执行机构在运行过程中存在加速、匀速、减速等阶段。各阶段的时间长短、加速度的大小、在何位置开始匀速或减速均与给定位置、当前位置以及运行速度有关。速度给定发生器的工作原理为:通过比较实际阀位与给定阀位,当二者不相等时,以恒定加速度加速,减速点根据当前速度、阀位值、阀位给定值的大小计算得来。执行机构各阶段运行速度的计算原理图 2-2 执行机

14、构的典型运行速度图图 2-2 执行机构的典型运行速度图,它由若干段变化速率不同的折线组成。将曲线上速率开始发生改变的那一点称为起始段点,相应的时间称为段起始时间,如图 3-2 中的 t(i)(i0,1,2,),相应的速度称为段起始速度,如图 3-2 所示 vi)(i0,1,2,)。 设第 i 段速度的变化速率为 ki,则有: 式中:v 为两段点之间的速度变化值,vvi1vi; t 为两段之间的时间,tti1ti。 显然,当 ki0 时为恒速段,ki0 时为升速段,ki0 时为减速段。任意时刻的速度给定值为: Ts 为采样周期。 变化速率 ki 的取值由给定位置、当前位置以及运行速度的大小确定。

15、第 3 章 机电一体化中继电器保护的现状与发展3.1 继电保护发展现状电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在 40 余年的时间里完成了发展的 4 个历史阶段。建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约 10 年的时间里走过了先进国家半个世纪走过的道路。50 年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术1,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术

16、队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在 60 年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。自 50 年代末,晶体管继电保护已在开始研究。60 年代中到 80 年代中是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的 500kV 晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝 500 kV 线路上2,结束了 500kV 线路保护完全依靠从国外进口的时代。在

17、此期间,从 70 年代中,基于集成运算放大器的集成电路保护已开始研究。到 80 年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到 90 年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。在这方面南京电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用3,天津大学与南京电力自动化设备厂合作研制的集成电路相电压补偿式方向高频保护也在多条 220kV 和 500kV 线路上运行。我国从 70 年代末即已开始了计算机继电保护的研究4,高等院校和科研院所起着先导的作用。华中理工大学、东南大学、华北电力学院、西安交通大学、天津大学、上海交通大学、重庆大学和南京电

18、力自动化研究院都相继研制了不同原理、不同型式的微机保护装置。1984 年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用5,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,东南大学和华中理工大学研制的发电机失磁保护、发电机保护和发电机?变压器组保护也相继于 1989、1994 年通过鉴定,投入运行。南京电力自动化研究院研制的微机线路保护装置也于 1991 年通过鉴定。天津大学与南京电力自动化设备厂合作研制的微机相电压补偿式方向高频保护,西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护也相继于 1993、1996 年通过鉴定。

19、至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。可以说从 90 年代开始我国继电保护技术已进入了微机保护的时代。3.2 继电保护的未来发展继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。3.2.1 计算机化随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。原华北电力学院研制的微机线路保护硬件已经历了 3 个发展阶段:从 8 位单 CPU 结构的微机保护问世,不到 5 年时间就发展到多 CPU 结构,后又发

20、展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。华中理工大学研制的微机保护也是从 8 位 CPU,发展到以工控机核心部分为基础的 32 位微机保护。南京电力自动化研究院一开始就研制了 16 位 CPU 为基础的微机线路保护,已得到大面积推广,目前也在研究 32 位保护硬件系统。东南大学研制的微机主设备保护的硬件也经过了多次改进和提高。天津大学一开始即研制以 16 位多CPU 为基础的微机线路保护,1988 年即开始研究以 32 位数字信号处理器(DSP)为基础的保护、控制、测量一体化微机装置,目前已与珠海晋电自动化设备公司合作研制成一种功能齐全的 32 位大模块,一个模块就是一个小

21、型计算机。采用 32 位微机芯片并非只着眼于精度,因为精度受 A/D 转换器分辨率的限制,超过 16 位时在转换速度和成本方面都是难以接受的;更重要的是 32 位微机芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口。CPU 的寄存器、数据总线、地址总线都是 32 位的,具有存储器管理功能、存储器保护功能和任务转换功能,并将高速缓存(Cache)和浮点数部件都集成在 CPU 内。电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享

22、全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台 PC 机的功能。在计算机保护发展初期,曾设想过用一台小型计算机作成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。天津大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。这种装置的优点有:(1)具有 486PC 机的全部功能,能满足对当前和未来微机保护的各种功能要求。(2)尺寸和结构与目前的微机保护装

23、置相似,工艺精良、防震、防过热、防电磁干扰能力强,可运行于非常恶劣的工作环境,成本可接受。(3)采用 STD 总线或 PC 总线,硬件模块化,对于不同的保护可任意选用不同模块,配置灵活、容易扩展。继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。3.2.2 网络化计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。到目前为止,除了差动保护和纵联保护外,所有继电

24、保护装置都只能反应保护安装处的电气量。继电保护的作用也只限于切除故障元件,缩小事故影响范围。这主要是由于缺乏强有力的数据通信手段。国外早已提出过系统保护的概念,这在当时主要指安全自动装置。因继电保护的作用不只限于切除故障元件和限制事故影响范围(这是首要任务),还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。对于一般的非系统保

25、护,实现保护装置的计算机联网也有很大的好处。继电保护装置能够得到的系统故障信息愈多,则对故障性质、故障位置的判断和故障距离的检测愈准确。对自适应保护原理的研究已经过很长的时间,也取得了一定的成果,但要真正实现保护对系统运行方式和故障状态的自适应,必须获得更多的系统运行和故障信息,只有实现保护的计算机网络化,才能做到这一点。对于某些保护装置实现计算机联网,也能提高保护的可靠性。天津大学1993 年针对未来三峡水电站 500kV 超高压多回路母线提出了一种分布式母线保护的原理6,初步研制成功了这种装置。其原理是将传统的集中式母线保护分散成若干个(与被保护母线的回路数相同)母线保护单元,分散装设在各

26、回路保护屏上,各保护单元用计算机网络联接起来,每个保护单元只输入本回路的电流量,将其转换成数字量后,通过计算机网络传送给其它所有回路的保护单元,各保护单元根据本回路的电流量和从计算机网络上获得的其它所有回路的电流量,进行母线差动保护的计算,如果计算结果证明是母线内部故障则只跳开本回路断路器,将故障的母线隔离。在母线区外故障时,各保护单元都计算为外部故障均不动作。这种用计算机网络实现的分布式母线保护原理,比传统的集中式母线保护原理有较高的可靠性。因为如果一个保护单元受到干扰或计算错误而误动时,只能错误地跳开本回路,不会造成使母线整个被切除的恶性事故,这对于象三峡电站具有超高压母线的系统枢纽非常重

27、要。由上述可知,微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。3.2.3 保护、控制、测量、数据通信一体化在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。目前,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、

28、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆不但要大量投资,而且使二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(OTA)和光电压互感器(OTV)已在研究试验阶段,将来必然在电力系统中得到应用。在采用 OTA 和 OTV 的情况下,保护装置应放在距 OTA 和 OTV 最近的地方,亦即应放在被保护设备附近。OTA 和 OTV 的光信号输

29、入到此一体化装置中并转换成电信号后,一方面用作保护的计算判断;另一方面作为测量量,通过网络送到主控室。从主控室通过网络可将对被保护设备的操作控制命令送到此一体化装置,由此一体化装置执行断路器的操作。1992 年天津大学提出了保护、控制、测量、通信一体化问题,并研制了以TMS320C25 数字信号处理器(DSP)为基础的一个保护、控制、测量、数据通信一体化装置。3.2.4 智能化 近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始7。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经

30、网络方法则可迎刃而解。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。天津大学从 1996 年起进行神经网络式继电保护的研究,已取得初步成果8。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。结束语在机电一体化控制中,该执行机构集微机技术和执行器技术于一体,是一种新型的

31、终端控制单元,其电机是通过内部集成的一体化变频器来控制,因此,同一台智能执行机构可以在一定范围内具有不同的运行速度和关断力矩。该智能执行机构采用了液晶显示技术,它利用内置的液晶显示板,不仅可以显示阀门的开、关状态和正常运行时阀门的开度,还可以通过菜单选择运行参数设定,当系统出现故障时,能显示出故障信息。总之,该执行机构集测量、决断、执行 3 种功能于一体,顺应了电动执行机构的发展趋势,它的研制成功给电动执行机构的研究开发提供了新的思路。建国以来,我国电力系统继电保护技术经历了 4 个时代。随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。国内外继电保护技术

32、发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化,这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。发展机电一体化,开发和生产有关的机电一体化产品。机电一体化产品功能强、性能好、质量高、成本低,且具有柔性,可根据市场需要和用户反映时产品结构和生产过程做必要的调整、改革,而无须改换设备。同时,可为传统的机械工业注入新鲜血液,带来新的活力,把机械生产从繁重的体力劳动中解脱出来,实现文明生产。参考文献1: 尔桂花. 运动控制系统 清华大学出版社2:潘永雄. 电子线路 CAD 实用教程 西安电子科技大学出版社3:张毅刚. MCS51 单片机应用设计 哈尔宾工业大学出版社4:殷际星. 机电一体化实用技术 北京化学工业出版社5:芮延年机电一体化系统设计 北京机械工业出版社附录:电器控制原理图 1附录:电器控制原理图 2学 号 姓 名 专 业系 别 班 级 学 制论文题目指导教师姓名 职务和职称指导教师评语:成绩: 指导教师姓名: 年 月 日复审意见:成绩: 复审人签名: 年 月 日答辩委员会评语成绩: 主持人签名: 年 月 日终审意见成绩: 终审人签名: 年 月 日

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报