一、一维离散型随机变量函数的分布,二、一维连续型随机变量函数的分布,三、小结,第2.7.1节 一维随机变量函数的分布,问题,一、一维离散型随机变量函数的分布,Y 的可能值为,即 0, 1, 4.,解,例1,故 Y 的分布律为,由此归纳出离散型随机变量函数的分布律的求法.,离散型随机变量函数概率分布的计算,Y 的分布律为,例2 设,解,-4,-4,-1,第一步 先求Y=2X+8 的分布函数,解,二、一维连续型随机变量函数的分布,例3,第二步 由分布函数求概率密度.,定理中将 改为 结论也成立.,证:,当 时,当 时,当 时,综上所述,当 时,命题得证,证明,X 的概率密度为,例5,其值域为R,请同学们思考,答,所以,三、小结,1. 离散型随机变量函数的分布,2. 连续型随机变量的函数的分布,方法1,