1、 SJY-QR-24-03 数学模拟试卷(八)1答案必须答在答题卡上指定的位置,答在试卷上无效.2本试卷中, 表示角 的正切, 表示角 的余切.tancot一、选择题:本大题共 17 小题;每小题 5 分,共 85 分,在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上.1. 设集合 ,集合 ,则集合 ( )25Mx03Nx或 MN)(A3)(B25x或C0D2. 已知复数 ,则 的虚部为( )4zi1z)(A25)(B425)(C4)(D143.函数 的反函数的定义域是( ) 3xy)(0,)(,)(2,)(,4. 设甲: ; 乙: . 则(
2、)x甲是乙的充要条件A甲是乙的无关条件)(B甲是乙的充分条件但非必要条件C甲是乙的必要条件但非充分条件D5. 若向量 、 满足 , ,且 和 的夹角为 ,则 ( )ab34bab120ab)(A6)(B6)(C63)(D636. 过点 ,且与 平行的直线方程为( )3,1210xyxy27xy)(C7)(D107.函数 在 上单调递增,则 的取值范围为( )2fa,3aA6B6)(5)(5班级 学号 姓名 成绩 8. 已知 ,且 ,则 的值为( )(0,)23cos5sin()4)A71)B72(C(D19. 如果实数 满足 ,则 的最小值为( ),ab102ab)(40)()(C0)(D50
3、10. 一学生从 10 本不同的图书中至少选 8 本,则不同的选法种数为( )A5B5566411. 在 中, ,则 的值等于( )C30cossinAB)(12)(2)(12)(3212. 在 10 件产品中有 3 件是次品,则从中任取 2 件,其中至多有 1 件次品的概率是( ))(A415)(B715)(C315)(D513. 已知抛物线方程 ,则它的焦点到准线的距离是( )28yx8 4 2 6)()()()(14. 设椭圆方程为 ,则该椭圆的离心率为( )16)(A2)(B3)(C32)(D7215. 空间向量 与 轴的夹角等于( )a,2z)(30)(45)(60)(9016. 的
4、展开式中的常数项是( )261x)(A)(B12)(C15)(D317. 已知底面边长为 的正三棱锥的体积为 ,则此三棱锥的高为( )29: 66366SJY-QR-24-03 二、填空题:本大题共 4 小题;每小题 4 分,共 16 分,把答案写在答题卡相应题号后.18.设 是两向量,且 则 .,ab2816+=-,-+,abijabij=ab19. .21limx20.不等式 的解集为 .521.从一个班级中任取 10 名学生做英语口语测试,成绩如下(单位:分)76 90 84 86 81 87 86 82 85 83样本方差等于 .三、解答题:本大题共 4 小题,共 49 分.解答应写出推理、演算步骤,并将其写在答题卡相应的题号后.22(本小题满分 12 分)已知等差数列 中, ,公差 .na352d()求数列 的通项公式;()若数列 的前 项的和 ,求 的值.n10nSn23(本小题满分 12 分)如图,从塔的正东方向上相距 的两点,测得塔尖20m的仰角分别是 和 ,求塔高.45324(本小题满分 12 分)设双曲线 上一点 到直线 的距离等于 ,其中 ,求 .21xy(,)Pabyx2ab,25(本小题满分 13 分)某商品每件 元,每星期卖出 件,如调整价格,每涨价 元,每星期要少卖 件,已知每件商6030110品的成本为 元,如何定价才能使利润最大?4ADBC