收藏 分享(赏)

初中二年级上数学知识要点.doc

上传人:fmgc7290 文档编号:7108503 上传时间:2019-05-06 格式:DOC 页数:10 大小:25.25KB
下载 相关 举报
初中二年级上数学知识要点.doc_第1页
第1页 / 共10页
初中二年级上数学知识要点.doc_第2页
第2页 / 共10页
初中二年级上数学知识要点.doc_第3页
第3页 / 共10页
初中二年级上数学知识要点.doc_第4页
第4页 / 共10页
初中二年级上数学知识要点.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、八年级数学(上)应知应会的知识点 因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2因式分解的方法:常用“ 提取公因式法” 、 “公式法” 、 “分组分解法” 、 “十字相乘法”.3公因式的确定:系数的最大公约数? 相同因式的最低次幂.注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.4因式分解的公式:(1)平方差公式: a2-b2=(a+ b) (a- b) ;(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.5因

2、式分解的注意事项:(1 )选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;(2 )使用因式分解公式时要特别注意公式中的字母都具有整体性;(3 )因式分解的最后结果要求分解到每一个因式都不能分解为止;(4 )因式分解的最后结果要求每一个因式的首项符号为正;(5 )因式分解的最后结果要求加以整理;(6 )因式分解的最后结果要求相同因式写成乘方的形式.6因式分解的解题技巧:(1 )换位整理,加括号或去括号整理;( 2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;( 10)拆项或补项.

3、7完全平方式:能化为(m+n)2 的多项式叫完全平方式;对于二次三项式 x2+px+q, 有“ x2+px+q 是完全平方式 ? ”.分式1分式:一般地,用 A、B 表示两个整式,AB 就可以表示为 的形式,如果 B 中含有字母,式子 叫做分式.2有理式:整式与分式统称有理式;即 .3对于分式的两个重要判断:(1 )若分式的分母为零,则分式无意义,反之有意义;(2 )若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.4分式的基本性质与应用:(1 )若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2 )注意:在分式中,分子、

4、分母、分式本身的符号,改变其中任何两个,分式的值不变;即 (3 )繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.7分式的乘除法法则: .8分式的乘方: .9负整指数计算法则:(1 )公式: a0=1(a0), a-n= (a0);(2 )正整指数的运算法则都可用于负整指数计算;(3 )公式: , ;(4 )公式: (-1)-2=1, (-1)-3=-1.10分式的通分

5、:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.11最简公分母的确定:系数的最小公倍数?相同因式的最高次幂.12同分母与异分母的分式加减法法则: .13含有字母系数的一元一次方程:在方程 ax+b=0(a0)中,x 是未知数,a 和 b 是用字母表示的已知数,对 x 来说,字母 a 是 x 的系数,叫做字母系数,字母 b 是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用 a、b、c 等表示已知数,用x、y、z 等表示未知数 .14公式变形:把一个公式从一种形式变换成另一种形式,叫做公

6、式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为 0.15分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母) ,若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方

7、程的解;注意:由此可判断,使分母的值为零的未知数的值可可能是原方程的增根.18分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.数的开方1平方根的定义:若 x2=a,那么 x 叫 a 的平方根, (即 a 的平方根是 x) ;注意:(1)a 叫x 的平方数, ( 2)已知 x 求 a 叫乘方,已知 a 求 x 叫开方,乘方与开方互为逆运算.2平方根的性质:(1 )正数的平方根是一对相反数;(2 ) 0 的平方根还是 0;(3 )负数没有平方根.3平方根的表示方法:a 的平方根表示为 和 .注意: 可以看作是一个数,也可以认为是一个数开二次方的运算.4

8、算术平方根:正数 a 的正的平方根叫 a 的算术平方根,表示为 .注意:0 的算术平方根还是 0.5三个重要非负数: a20 ,|a|0 , 0 .注意:非负数之和为 0,说明它们都是 0.6两个重要公式: (1 ) ; (a0)(2 ) .7立方根的定义:若 x3=a,那么 x 叫 a 的立方根, (即 a 的立方根是 x).注意:(1)a 叫 x的立方数;(2)a 的立方根表示为 ;即把 a 开三次方.8立方根的性质:(1 )正数的立方根是一个正数;(2 ) 0 的立方根还是 0;(3 )负数的立方根是一个负数.9立方根的特性: .10无理数:无限不循环小数叫做无理数.注意:?和开方开不尽

9、的数是无理数.11实数:有理数和无理数统称实数.12实数的分类:(1 ) (2 ) .13数轴的性质:数轴上的点与实数一一对应.14无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆: .三角形几何 A 级概念:(要求深刻理解、熟练运用、主要用于几何证明)1三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图) 几何表达式举例:(1) AD 平分BACBAD= CAD(2) BAD

10、=CADAD 是角平分线2三角形的中线定义:在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)几何表达式举例:(1) AD 是三角形的中线 BD = CD (2) BD = CDAD 是三角形的中线3三角形的高线定义:从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.(如图)几何表达式举例:(1) AD 是 ABC 的高ADB=90(2) ADB=90AD 是 ABC 的高4 三角形的三边关系定理:三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)几何表达式举例:(1) AB+BCAC(2) AB-BCAC5等腰三角形的定义:有两条边相

11、等的三角形叫做等腰三角形. (如图)几何表达式举例:(1) ABC 是等腰三角形 AB = AC (2) AB = AC ABC 是等腰三角形6等边三角形的定义:有三条边相等的三角形叫做等边三角形. (如图)几何表达式举例:(1)ABC 是等边三角形AB=BC=AC(2) AB=BC=ACABC 是等边三角形7三角形的内角和定理及推论:(1 )三角形的内角和 180;(如图)(2 )直角三角形的两个锐角互余;(如图)(3 )三角形的一个外角等于和它不相邻的两个内角的和;(如图)(4)三角形的一个外角大于任何一个和它不相邻的内角.(1 ) (2 ) (3 ) (4) 几何表达式举例:(1) A+

12、B+C=180(2) C=90A+B=90(3) ACD= A+B(4) ACD A8直角三角形的定义:有一个角是直角的三角形叫直角三角形.(如图) 几何表达式举例:(1) C=90ABC 是直角三角形(2) ABC 是直角三角形C=909等腰直角三角形的定义:两条直角边相等的直角三角形叫等腰直角三角形.(如图) 几何表达式举例:(1) C=90 CA=CBABC 是等腰直角三角形(2) ABC 是等腰直角三角形C=90 CA=CB10全等三角形的性质:(1 )全等三角形的对应边相等;(如图)(2 )全等三角形的对应角相等.(如图)几何表达式举例:(1) ABC EFG AB = EF (2)

13、 ABC EFGA=E 11全等三角形的判定:“SAS”“ASA”“AAS”“SSS”“HL”. (如图)(1 ) (2)(3 ) 几何表达式举例:(1) AB = EF B= F又 BC = FGABC EFG(2) (3)在 RtABC 和 RtEFG 中 AB=EF又 AC = EGRtABCRtEFG12角平分线的性质定理及逆定理:(1 )在角平分线上的点到角的两边距离相等;(如图)(2 )到角的两边距离相等的点在角平分线上.(如图)几何表达式举例:(1)OC 平分 AOB又CDOA CEOB CD = CE (2) CDOA CEOB又CD = CEOC 是角平分线13线段垂直平分线

14、的定义:垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)几何表达式举例:(1) EF 垂直平分 ABEFAB OA=OB(2) EFAB OA=OBEF 是 AB 的垂直平分线14线段垂直平分线的性质定理及逆定理:(1 )线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)(2 )和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图) 几何表达式举例:(1) MN 是线段 AB 的垂直平分线 PA = PB (2) PA = PB点 P 在线段 AB 的垂直平分线上15等腰三角形的性质定理及推论:(1 )等腰三角形的两个底角相等;(即等边对等角)

15、(如图)(2 )等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3 )等边三角形的各角都相等,并且都是 60.(如图)(1 ) (2 ) (3 ) 几何表达式举例:(1) AB = ACB=C (2) AB = AC又BAD= CADBD = CDADBC(3) ABC 是等边三角形 A=B= C =6016等腰三角形的判定定理及推论:(1 )如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2 )三个角都相等的三角形是等边三角形;(如图)(3 )有一个角等于 60的等腰三角形是等边三角形;(如图)(4 )在直角三角形中,如果有一个角等于 3

16、0,那么它所对的直角边是斜边的一半.(如图)(1 ) (2 ) (3) (4) 几何表达式举例:(1) B= C AB = AC (2) A=B=CABC 是等边三角形(3) A=60又AB = ACABC 是等边三角形(4) C=90B=30 AC = AB17关于轴对称的定理(1 )关于某条直线对称的两个图形是全等形;(如图)(2 )如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)几何表达式举例:(1) ABC 、EGF 关于 MN 轴对称ABC EGF(2) ABC 、EGF 关于 MN 轴对称OA=OE MNAE18勾股定理及逆定理:(1 )直角三角形的两直角

17、边 a、b 的平方和等于斜边 c 的平方,即 a2+b2=c2;(如图)(2 )如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形是直角三角形 .(如图) 几何表达式举例:(1) ABC 是直角三角形a2+b2=c2(2) a2+b2=c2ABC 是直角三角形19 Rt 斜边中线定理及逆定理:(1 )直角三角形中,斜边上的中线是斜边的一半;(如图)(2 )如果三角形一边上的中线是这边的一半,那么这个三角形是直角三角形.(如图) 几何表达式举例:(1) ABC 是直角三角形D 是 AB 的中点CD = AB(2) CD=AD=BDABC 是直角三角形几何 B 级概念:(要求理解、会

18、讲、会用,主要用于填空和选择题)一 基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二 常识:1三角形中,第三边长的判断: 另两边之差第三边另两边之和 .2三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3如图,三角形中,有一个重要的面积等式,即:若 CDAB,BECA ,则 CD?AB=BE?CA.

19、4三角形能否成立的条件是:最长边另两边之和.5直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6分别含 30、45、60的直角三角形是特殊的直角三角形.7如图,双垂图形中,有两个重要的性质,即:(1 ) AC?CB=CD?AB ; (2)1=B ,2=A .8三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10等边三角形是特殊的等腰三角形.11几何习题中, “文字叙述题”需要自己画图,写已知、求证、证明 .12符合“AAA” “SSA”条件的三角形不能判定全等.13几何习题经常用四种方法

20、进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;( 5)作线段的中垂线;( 6)过已知点作已知直线的平行线.15会用尺规完成“SAS” 、 “ASA”、 “AAS”、 “SSS”、 “HL”、 “等腰三角形” 、 “等边三角形” 、“等腰直角三角形”的作图.16作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17几何画图的类型:(1 )估画图;(2 )工具画图;(3)尺规画图

21、.18 几何重要图形和辅助线:(1 )选取和作辅助线的原则: 构造特殊图形,使可用的定理增加; 一举多得; 聚合题目中的分散条件,转移线段,转移角; 作辅助线必须符合几何基本作图.(2 )已知角平分线.(若 BD 是角平分线) 在 BA 上截取 BE=BC 构造全等,转移线段和角; 过 D 点作 DEBC 交 AB 于 E,构造等腰三角形 .(3 )已知三角形中线(若 AD 是 BC 的中线) 过 D 点作 DEAC 交 AB 于 E,构造中位线 ; 延长 AD 到 E,使 DE=AD 连结 CE 构造全等,转移线段和角; AD 是中线 S ABD= SADC(等底等高的三角形等面积)(4) 已知等腰三角形 ABC 中,AB=AC 作等腰三角形 ABC 底边的中线 AD(顶角的平分线或底边的高)构造全等三角形; 作等腰三角形 ABC 一边的平行线 DE,构造新的等腰三角形.(5 )其它 作等边三角形 ABC一边 的平行线 DE,构造新的等边三角形; 作 CEAB,转移角; 延长 BD 与 AC 交于 E,不规则图形转化为规则图形; 多边形转化为三角形; 延长 BC 到 D,使 CD=BC,连结 AD,直角三角形转化为等腰三角形; 若 ab,AC,BC 是角平分线, 则 C=90 .

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报