1、 小学数学一至六年级数学知识点总结(人教版)一年级 九九乘法口诀表。学会基础加减乘。 小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。 小学三年级学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。 小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。 小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。 小学六年级 比例百分比概率,圆扇圆柱及圆锥。 必背定义、定理公式 三角形的面积底高2。 公式 S= ah2 正方形的面积边长边长 公式 S= aa 长方形的面积长宽 公式 S= ab 平行四边形的面积底高 公式 S= ah 梯形的面积(
2、上底+下底)高2 公式 S=(a+b)h2 内角和:三角形的内角和180 度。 长方体的体积长宽高 公式:V=abh 长方体(或正方体)的体积底面积高 公式:V=abh 正方体的体积棱长棱长棱长 公式:V=aaa 圆的周长直径 公式:Ld 2r 圆的面积半径半径 公式:Sr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=dh 2rh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2r2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积1/3 底面 积高。公式:V=1/3Sh 分数的加、减法则:同分母的
3、分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。 读懂理解会应用以下定义定理性质公式 一、算术方面 1、加法交换律:两数相加交换加数的位置,和不变。 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再
4、把两个积相加,结果不变。如:(2+4)525+4 5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O 除以任何不是 O 的数都得 O。 简便乘法:被乘数、乘数末尾有 O 的乘法,可以先把 O 前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。8、什么叫方程式?答:含有未知数的等式叫方程式。 9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。
5、即例出代有 的算式并计算。 10、分数:把单位“1“平均分成若干份,表示这样的一份或几分的数 ,叫做分数。 11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15、分数除以整数(0 除外) ,等于分数乘以这个整数的倒数。 16、真分数:分子比分母小的分数叫做真分数。 17、假分
6、数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于 1。 18、带分数:把假分数写成整数和真分数的形式,叫做带分数。 19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0 除外) ,分数的大小不变。 20、一个数除以分数,等于这个数乘以分数的倒数。 21、甲数除以乙数(0 除外) ,等于甲数乘以乙数的倒数。 数量关系计算公式方面 1、单价数量总价 2、单产量数量总产量 3、速度时间路程 4、工效时间工作总量 5、加数+加数和 一个加数和另一个加数 被减数减数差 减数被减数差 被减数减数差 因数因数积 一个因数积另一个因数 被除数除数商 除数被除数商 被除数商除数
7、有余数的除法: 被除数商除数+余数 一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:905690(56 ) 6、 1 公里1 千米 1 千米1000 米 1 米10 分米 1 分米 10 厘米 1 厘米10 毫米 1 平方米100 平方分米 1 平方分米100 平方厘米 1 平方厘米100 平方毫米 1 立方米1000 立方分米 1 立方分米1000 立方厘米 1 立方厘米1000 立方毫米 1 吨1000 千克 1 千克= 1000 克= 1 公斤= 1 市斤 1 公顷10000 平方米。 1 亩666.666 平方米。 1 升1 立方分米1000 毫升 1
8、 毫升1 立方厘米 7、什么叫比:两个数相除就叫做两个数的比。如:25 或 3:6 或 1/3 比的前项和后项同时乘以或除以一个相同的数(0 除外) ,比值不变。 8、什么叫比例:表示两个比相等的式子叫做比例。如 3:69:18 9、比例的基本性质:在比例里,两外项之积等于两内项之积。 10、解比例:求比例中的未知项,叫做解比例。如 3:9:18 11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商 k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k 一定) 或 kx=y 12、反比例:两种相关联的量,一种量变化
9、,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:xy = k( k 一定)或 k / x = y 百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。 13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以 100就行了。 把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数) ,再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘
10、以 100就行了。 把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 15、要学会把小数化成分数和把分数化成小数的化发。 16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。 (或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。 ) 17、互质数: 公约数只有 1 的两个数,叫做互质数。 18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。 19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。 (通分用最小公倍数) 20、约分:把一个分数化成同它相等,但分
11、子、分母都比较小的分数,叫做约分。 (约分用最大公约数) 21、最简分数:分子、分母是互质数的分数,叫做最简分数。 分数计算到最后,得数必须化成最简分数。 个位上是 0、2 、4、 6、8 的数,都能被 2 整除,即能用 2 进行约分。个位上是0 或者 5 的数,都能被 5 整除,即能用 5 进行约分。在约分时应注意利用。 22、偶数和奇数:能被 2 整除的数叫做偶数。不能被 2 整除的数叫做奇数。 23、质数(素数):一个数,如果只有 1 和它本身两个约数,这样的数叫做质数(或素数) 。 24、合数:一个数,如果除了 1 和它本身还有别的约数,这样的数叫做合数。 1不是质数,也不是合数。 2
12、8、利息本金利率时间(时间一般以年或月为单位,应与利率的单位相对应) 29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。 30、自然数:用来表示物体个数的整数,叫做自然数。0 也是自然数。 31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如 3. 141414 32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。 如 3. 141592654 33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字
13、依次不断的重复出现,这样的小数叫做无限不循环小数。如 3. 141592654 34、什么叫代数? 代数就是用字母代替数。 35、什么叫代数式? 用字母表示的式子叫做代数式。如:3x =ab+c 一般运算规则 1 每份数份数总数总数每份数份数 总数份数每份数 2 1 倍数倍数几倍数几倍数1 倍数倍数几倍数倍数1 倍数 3 速度时间路程路程速度时间 路程时间速度 4 单价数量总价总价单价数量 总价数量单价 5 工作效率工作时间工作总量工作总量工作效率工作时间工作总量工作时间工作效率 6 加数加数和和一个加数另一个加数 7 被减数减数差被减数差减数 差减数被减数 8 因数因数积积一个因数另一个因数
14、 9 被除数除数商被除数商除数 商除数被除数 小学数学图形计算公式 1 正方形 C 周长 S 面积 a 边长 周长边长4 C=4a 面积=边长边长 S=aa 2 正方体 V:体积 a:棱长 表面积=棱长棱长 6 S 表=aa6 体积=棱长棱长棱长 V=aaa 3 长方形 C 周长 S 面积 a 边长 周长=(长+宽) 2 C=2(a+b) 面积=长宽 S=ab 4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 表面积(长 宽+长高+ 宽高) 2 S=2(ab+ah+bh) 体积=长宽高 V=abh 5 三角形 s 面积 a 底 h 高 面积=底高2 s=ah2 三角形高=面积 2底三角形底=面积 2高 6 平行四边形 s 面积 a 底 h 高 面积=底高 s=ah 7 梯形 s 面积 a 上底 b 下底 h 高 面积=(上底+下底) 高2 s=(a+b) h2 8 圆形 S 面积 C 周长 d=直径 r=半径 周长=直径=2半径 C=d=2 r 面积=半径半径 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 侧面积=底面周长高表面积 =侧面积+底面积2 体积=底面积高体积侧面积 2半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积高3