1、2019/5/1,二元一次不等式表示平面区域,简单的线性规划(1),1.在平面直角坐标系中, 点的集合(x,y)|x-y+1=0表示什么图形?,想一想?,2.点的集合(x,y)|x-y+10表示什么图形?,一、提出问题引入新课,1,-1,x-y+10,x-y+10,x-y+1=0,二、解决问题猜想证明,猜一猜:,(1)对直线L右下方的点(x,y),x+y-10 成立;,(2)对直线L左上方的点(x,y),x+y-10 成立.,试一试:,在平面直角坐标系中,取特殊点代入x+y-1尝试验证.,证一证:,在直线x-y+1=0的下方任取一点M(x,y),过点M作平行于x轴的直线与直线x-y+1=0交于
2、P(x0,y0),则y=y0 , Xx0,从而 x-y+1 x0-y0+1=0,由于M的任意性,故对于直线x-y+1=0下方任意点(x,y),都有x-y+10;,同理:对于直线上方的任意一点(x,y),都有x-y+10.,(1)二元一次不等式Ax+By+C0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域;,(2)在确定区域时,在直线的某一侧取一个特殊点(x0,y0) ,从Ax0+By0+C的正负可以判断出Ax+By+C0表示哪一侧的区域。一般在C0时,取原点作为特殊点;,得出结论:,(3)注意所求区域是否包括边界线。,例1.画出不等式 2x+y-60表示的平面区域。,3
3、,6,2x+y-60,2x+y-6=0,三、典型例题分析与练习,练习1: 画出下列不等式表示的平面区域: (1) (2)21 (3),(1),(2),(3),例2.画出不等式组表示的平面区域,x+y=0,x=3,x-y+5=0,注:不等式组表示的平面区域是各不等式所表示平面区域的公共部分。,练习2: 1.画出下列不等式组表示的平面区域:,2.由三直线x-y=0;x+2y-4=0及y+2=0所围成的平面区域如下图:,则用不等式可表示为:,应该注意的几个问题:,1、若不等式中不含0,则边界应画成虚线,否则应画成实线。 2、画图时应非常准确,否则将得不到正确结果。 3、熟记“直线定边界、特殊点定区域”方法的内涵。,四、课堂小结:,作业:P.64.习题:1题(2)、(4)、(6)、(8).,