1、第3章 效用函数,3.1 引言 3.2 效用的定义和公理系统 3.3 效用函数的构造 3.4 风险与效用 3.5 货币的效用 3.6 阿莱斯悖论(Allaiss paradox),3.1 引言,在定量评价可能的行动的各种后果时,会遇到两个主要问题: (1) 后果本身是用语言表述,可能没有任何合适的直接测量标度。 (2) 即使有一个明确的标度可以测量后果,按这个标度测得的量也可能并不反映后果对决策人的真正价值。,3.1 引言,这个例子说明:即使是数值量表示的后果,它对决策人的实际价值仍有待确定。,例3.1 考虑钱对同一个人的价值。假设一个学生手头紧张,正好有机会挣100元钱,但是所要做的是他相当
2、讨厌的工作。(1)如他经济情况差,他会认为100元钱的实际价值足够大,所要做的工作即使是相当讨厌的,他仍会去干;(2)如他先有了10000元,要为100元钱去干这份让他讨厌的工作,他就很可能不干了。,3.1 引言,例3.2 决策人面临图3.1中决策树所示的选择: 确定收入礼品1000元; 参与一次抽奖:有50%的机会得0元,50%的机会得2500元。,有人选确定性的1000元的收入。抽奖的期望值虽大,风险也大,实际价值还不如保险的1000元。,而有人认为礼品不如抽奖,因为抽奖提供了获得2500元的机会。,这个例子说明:决策人的风险态度影响其对后果的实际价值判断。,圣彼得堡悖论 (St. Pet
3、ersburg Paradox/game),圣彼得堡悖论是数学家丹尼尔伯努利(Daniel Bernoulli)的表兄尼古拉伯努利(Nicolaus Bernoulli)在1738提出的一个概率期望值悖论,它来自于一种掷币游戏,即圣彼得堡游戏(表1)。,问题:你愿意花100元来参加一次圣彼得堡游戏吗?,圣彼得堡悖论的解释1:,(一)边际效用递减论 Daniel Bernoulli在提出这个问题的时候就给出一种解决办法。他认为游戏的期望值计算不应该是金钱,而应该是金钱的期望效用,即利用众所周知的“期望效用递减律”,将金钱的效用测度函数用货币值的对数来表示:效用=log(货币值),如表 2所示。所
4、有结果的效用期望值之和将为一个有限值log(4) 0.60206,如果这里的效用函数符合实际,则理性决策应以4元为界。,圣彼得堡悖论的解释2:,(二)风险厌恶论 圣彼得堡悖论对于奖金额大小没有限制。 比如连续投掷40次才成功的话,奖金为1.1万亿元。但是这一奖金出现的概率极小,1.1万亿次才可能出现一次。实际上,游戏有一半的机会,其奖金为 2元,四分之三的机会得奖4元和2元。奖金越少,机会越大,奖金越大,机会越小。 Hacking(1980)所说:花25元的费用冒险参与游戏将是非常愚蠢的,虽有得大奖的机会,但是风险太大。 因此,考虑采用风险厌恶因素的方法可以消解矛盾。Pual Weirich就
5、提出在期望值计算中加人一种风险厌恶因子,并得出了游戏费用的有限期望值,认为这种方法实际上解决了该悖论。,圣彼得堡悖论的解释3:,(三)效用上限论 也有一种观点认为奖金的效用可能有一个上限,这样,期望效用之和就有了一个极限值。Menger认为效用上限是惟一能消解该悖论的方法。设效用值等于货币值,上限为100 单位,则游戏的期望效用为7.56l25,如表3所示。,圣彼得堡悖论的解释4:,(四)结果有限论 Gustason认为,要避免矛盾,必须对期望值概念进行限制,其一是限制其结果的数目;其二是把其结果值的大小限制在一定的范围内。 这是典型的结果有限论,这一观点是从实际出发的。因为实际上,游戏的投掷
6、次数总是有限的数。 比如对游戏设定某一个投掷的上限数L,在投掷到这个数的时候,如果仍然没有成功,也结束游戏,不管你还能再投多少,就按照L付钱。因为你即便不设定L,实际上也总有投到头的时候,人的寿命总是有限的,任何原因都可以使得游戏中止。现在设定了上限,期望值自然也就可以计算了。,3.1 引言,由上面例子可知:在进行决策分析时,存在如何描述或表达后果对决策人的实际价值,以便反映决策的人心目中各种后果的偏好次序(preference order)的问题。偏好次序是决策人的个性与价值观的反映,它与决策人所处的社会地位、经济地位、文化素养、心理和生理(身体)状态有关。,3.2 效用的定义和公理系统,3
7、.2.1 效用的定义 3.2.2 效用存在性公理 3.2.3 效用的公理化定义和效用的存在性 3.2.4 基数效用与序数效用,3.2.1 效用的定义,效用(utility):消费者从消费商品中得到的满足程度。效用完全是消费者的一种主观心理感受。 满足程度越高,效用越大; 满足程度越低,效用越小。,对效用的理解:最好吃的东西,兔子和猫争论,世界上什么东西最好吃。 兔子说,“世界上萝卜最好吃。萝卜又甜又脆又解渴,我一想起萝卜就要流口水。” 猫不同意,说,“世界上最好吃的东西是老鼠。老鼠的肉非常嫩,嚼起来又酥又松,味道美极了!” 兔子和猫争论不休、相持不下,跑去请猴子评理。 猴子听了,不由得大笑起来
8、:“瞧你们这两个傻瓜蛋,连这点儿常识都不懂!世界上最好吃的东西是什么?是桃子!桃子不但美味可口,而且长得漂亮。我每天做梦都梦见吃桃子。” 兔子和猫听了,全都直摇头。那么,世界上到底什么东西最好吃?,以上的故事说明效用完全是个人的心理感觉。 不同的偏好决定了对同一种商品效用大小的不同评价。,3.2.1 效用的定义,在决策理论中,后果对决策人的实际价值,即决策人对后果的偏好次序是用效用(utility)来描述的。效用就是偏好的量化,是数(实值函数)。1738年,Daniel Bernoulli就指出:若一个人面临从给定行动集(风险性展望集)中作选择的决策问题,如果他知道与给定行动有关的将来的自然状
9、态,且这些状态出现的概率已知或可以估计,则他应选择对各种可能后果的偏好的期望值最高的行动。,一、效用的基本概念与符号,(1) 严格序“ ” a b(或者记作aPb)的含义是“a优于b”( a is preferred to b );也就是说,若非外界因素的强迫,决策人只会选择a而不会选择b。,一、效用的基本概念与符号,(2) 无差异“” ab(或记作aIb)的含义是“a无差异于b” (a is indifference to b);也就是说,决策人对选择或同样满意。,一、效用的基本概念与符号,(3) 弱序“”记作aRb,含义是“a不劣于b”,亦即a优于或者无差异于b。,一、效用的基本概念与符号
10、,(4) 展望(prospect)展望指决策的可能的前景,即各种后果及后果出现的概率的组合,记作P= .,在例3.2的决策问题中,后果集 C=1000, 2500, 0,采取行动a1和a2时的展望分别是:P1=P2=,(4) 展望(prospect),展望既考虑各种后果Ci,又考虑了各种后果出现的概率(客观概率pi或主观概率i), 全面地描述了在决策问题中采取某种行动的可能前景。,复合展望,一、效用的基本概念与符号,(5) 抽奖与确定当量由机会点和该机会点发出的n个机会枝的概率及相应后果构成的图形称为抽奖(lottery),抽奖又称彩票。,若C1 (p, C2; (1-P),C3), 则称 确
11、定性后果C1为抽奖(p, C2; (1-P),C3)的确定当量(certainty equivalent)。,二、效用的定义,根据上述讨论和记号,可以初步给出效用函数的定义如下。定义3.1 在集合P上的实值函数u,若它和P上的优先关系一致,即:若 P1,P2属于 P ,P1 P2当且仅当u(P1)u(P2) ,则称u为效用函数。把效用函数定义在展望集P上而不是定义在后果集C上,是为了使效用函数能够反映决策人对风险的态度。,3.2.2 效用存在性公理,定义3.1给出了效用函数的最基本性质,这就是可以根据它的大小来判断展望P的优劣。 但是这样的效用函数是否一定存在呢?回答是不一定。 至于决策人的价
12、值判断在满足什么条件时存在与之一致的效用函数,von Neumann-Morgenstern (1944)给出了效用的存在性公理,又称理性行为公理。,传递性推导:,P1 P2P1+(1-)P1 P2+(1-)P2P1+(1-)P3 P2+(1-)P3,公理3.3表明两个有序的展望各有相同的比例 被相等的量 替代后,优先关系不变.,例3.3 横过马路问题:效用有界性证明,3.2.3 效用的公理化定义和效用的存在性,3.2.3 效用函数的存在性,3.2.4 基数效用与序数效用,基数:为实数,如1,2,3, 序数:如第一,二,4,3,2,1基数性效用函数与序数效用函数区别: 基数效用定义在展望集P上
13、(考虑后果及其概率分布),是实数;序数效用定义在后果集C上,不涉及概率,可以是整正数.基数效用反映偏好强度(正线性变换下唯一, 即原数列可变换为:b+c, 2b+c, 3b+c, 100b+c; 其中 b, c R1, b0. )序数效用不反映偏好强度,(保序变换下唯一), 原序数列可变换为16,9,4,1;或 8,6,4,2,或10,7,6,1等.,3.2.4 基数效用与序数效用,基数(cardinal number)效用:边际效用分析方法 总效用(TOTAL UTILITY,TU) :消费者在一定时间内从一定数量商品的消费中所得到的效用量的总和 ; 边际效用(MARGINAL UTILIT
14、Y,MU):消费者在一定时间内增加一单位商品的消费所得到的效用量的增量.序数(ordinal number)效用:无差异曲线分析方法 希克斯认为,效用的数值表现只是为了表达偏好的顺序,并非效用的绝对数值。现在比较通用的是序数效用。,3.3 效用函数的构造,1估计效用函数值的方法 2离散型后果的效用设定 3连续型后果的效用函数构造 4用解析函数近似效用曲线,1估计效用函数值的方法, 概率当量法 确定当量法 增益当量法 损失当量法 从纯理论角度看,这四种方法并没有实质性的区别;但是实验结果表明,使用确定当量法时决策人对最优后果(增益)的保守性和对损失的冒险性都比概率当量法严重(Hershey,19
15、82);采用增益当量法与损失当量法时产生的误差也比用概率当量法大,因此只要有可能,应该尽可能使用概率当量法。, 概率当量法,2离散型后果的效用设定,后果为离散型随机变量时,后果集C中元素为有限个,构造后果集上的效用函数有两方面的内容:(1)确定各后果之间的优先序;(2)确定后果之间的优先程度。 离散型后果效用值的设定可以采用概率当量法,简称NM法。,NM法步骤如下:,例3.6,例3.6 天气预报说球赛时可能有雨,一个足球爱好者要决定是否去球场看球。,首先作该问题的决策树如图所示。由题意可知决策人对四种后果优劣的排序是:c2c3c4c1。,步骤:,第一步: 令u(c1)=0, u(c2)=1。
16、第二步: 询问决策人,下雨在家看电视这种后果与去球场看球有多大概率下雨被淋相当,若决策人的回答是0.3,则c30.7 c2+0.3c1,u(c3)0.7u(c2) 0.7。 第三步:询问决策人,无雨看电视这种后果与去球场看球有多大概率下雨被淋相当,若决策人的回答是0.6,则c40.4c2+0.6c1,得u (c4)0.4c20.4。 第四步: 进行一致性校验。c30.4c2+0.6c4,则u(c3)=0.640.7。重复二、三,若u(c3)不变,则调整u(c4)=0.5,决策人仍认为c30.4c2+0.6c4,则通过校验。,3连续型后果的效用函数构造,当后果c为连续变量时,上述方法就不再适用。
17、 但是如果能通过分析找到u(c)的若干特征值,求特征点的效用后,再连成光滑曲线; 或者u(c)是连续、光滑的,则可以分段构造u(c)。,每天学习时间与效用,随着学习时间的增加,效用值也会有所增加 但是由于进入状态需要一定的时间,所以在t较小时,效用的增加较慢; 过了一小段时间后,效用与所化时间基本上是线性关系; 随着学习时间的不断增加,人会疲劳,效率会下降; 时间太长,这时的效果不如时间适度,即存在效用值最大的点tm; 再增加学习时间又会从效用最大值处下降。其中与效用最大值对应的tm是因人而异。 由于效用函数的惟一性(即在正线性变换下惟一,见效用的公理化定义),效用的值域可以是整个实轴,而不必
18、限于0,1区间。,4用解析函数近似效用曲线,为了分析和运算方便,分析人员通常希望能够用某种解析函数式u(x)来近似地表达效用。 常用的函数有幂函数和对数函数.,3.4 风险与效用,3.4.1 风险的含义 3.4.2 效用函数包含的内容 3.4.3 相对风险态度,3.4.1 风险的含义,风险包含有两个方面的内容: (1)后果的损失严重程度; (2)出现损失的可能性的大小. 一般的,可以用以下几种指标来度量风险。,(1)方差,(2)自方差,(3)临界概率,(4)Fishburn的风险定义,3.4.2 效用函数包含的内容,1.对风险的态度 2.对后果的偏好强度 3.可测价值函数,1.对风险的态度,如
19、图所示为几种典型的效用函数曲线。曲线A是下凹的,曲线N是线性的,曲线P是凸函数。这三种形状的曲线分别反映了决策人的三种风险态度:风险厌恶(risk aversion)、风险中立 (risk neutralness)和风险追求 (risk proneness)。,风险酬金,2对后果的偏好强度,考察一下钱的边缘价值:设某人现有积蓄为0,增加1000元对此人的作用(价值)与有了1000元后再加1500元相等,则此人的财富的价值函数是凹函数,如右图。 若询问货币后果对这个决策人的实际价值即效用时,决策人认为1000元(0.5,0; 0.5,2500), 则与其说此人是风险厌恶不如说他是相对风险中立。为
20、此有必要对确定性后果的偏好强度加以量化,这就是可测价值函数。,3.可测价值函数确定性后果偏好强度的量化,定义: 在后果空间X上的实值函数v,对w,x,y,zX有 I、(wx)(yz)当且仅当v(w)v(x)v(y)v(z), II、v对正线性变换是唯一确定的。则称v为可测价值函数。可测价值函数的示意图如右。,3.可测价值函数,3.4.3 相对风险态度,决策人的真实的风险态度被称作相对风险态度(relative risk attitude)。设效用函数和测价值函数在上都是单调递增,且连续二次可微。 1效用函数反映的风险的局部测度 0 u在x 处凹, 风险厌恶r(x)=-u”(x)/u(x) =
21、0 u在x 处线性, 风险中立 0 在x处有递减的边缘价值m(x)=-v”(x)/v(x) =0 在x处有不变的边缘价值 m(x) ,称为在x 处相对风险厌恶r(x)m (x),称为在x 处相对风险中立r(x)m(x) ,称为在x 处相对风险追求,3.5 货币的效用,3.6 阿莱斯悖论(Allaiss paradox),法国经济学家、诺贝尔经济学奖获得者阿莱斯(Allais,1953)进行了彩票选择实验。实验中,被试者被要求在两组彩票组合中分别进行选择:,推导(1):,假设:u($5 m) =1, u($0 m) = 0。如果决策人选择X,则有:0.9 u($0) + 0.1 u($5 m)
22、0.89 u($0) + 0.11 u($1 m)0.1 0.11 u($1 m)0.1/0.11 u($1 m)u($1 m) 0.1/0.11,推导(2):,假设:u($5 m) =1, u($0 m) = 0。如果决策人选择A ,则有:u($1 m) 0.89 u($1 m) + 0.1 u($5 m) + 0.01 u($0 m)u($1 m) 0.89 u($1 m) + 0.1 u($1 m) 0.1/0.11,“阿莱斯悖论”的启示:,“阿莱斯悖论”的解释:人们偏好确定性的结果,而厌恶不确定性的结果。(即人的效用函数往往低估一些只具有可能性的结果,而相对高估确定性的结果。) “阿莱
23、斯悖论” 说明了真实的个体决策行为会系统地违反期望效用理论中的期望效用最大化原理,从而动摇了决策科学的理论基石。,效用理论的最新成果:,卡尼曼和特沃斯基(Kahneman and Tversky,1979)提出的展望理论(prospect theory)。他们对促使人们无法做出符合传统理性决策模型的因素归纳出三个效果:,1)确定效果(certainty effect),在下命两个博彩间进行选择:博彩A:33%的机会得到2500元,66%的机会得到2400元, 1%的机会什么也得不到; 博彩B:100%的机会得到2400元。现在考虑下面两个博彩: 博彩C:33%的机会得到2500元,67%的机会
24、什么也得不到; 博彩D:34%的机会得到2400元,66%的机会什么也得不到。,1)确定效果(certainty effect),在A和B中,问卷的结果显示有82%的受访者选择博彩B。 在C和D中问卷显示有83%的人选择了博彩C。 根据期望效用理论,在第一个博彩中:0.33U(2500)+0.66U(2400) 0.34U(2400),两者在逻辑上矛盾。 产生矛盾的原因是,人们在面临不确定性时的选择表现出一些与传统的效用理论不符的特征,人的效用函数低估一些只具有可能性的结果,而相对高估确定性的结果,称之为确定效果。,2)反射效果(reflection effect),在下命两个博彩间进行选择:
25、 博彩A:80%的机会得到4000元; 博彩B:100%的机会得到3000元。现在考虑下面两个博彩: 博彩C:80%的机会损失4000元; 博彩D:100%的机会损失3000元。,2)反射效果(reflection effect),在A和B中,问卷的结果显示有80%的受访者选择博彩B。 在A和B中,问卷显示有83%的人选择了博彩C,问卷的结果显示92%的受访者选择博彩C。 在不确定条件下,行为人的决策不仅与不同行动的期望效用有关,更与行为对基准点的偏离方向有关。 当行动结果是受益时,行为人是风险规避者;而当行动结果是损失时,行为人是风险偏好者,这个称为反射效果。 虽然行为人在不同的基准点方向上
26、表现了不同的风险态度,但是这都是行为人损失避免心理的反映。,3)分离效果(isolation effect),考虑一个两阶段的博彩: 在博彩第一阶段,个人有75%的概率出局得不到任何回报,只有25%人进入下个阶段。第二阶段,在下面两个博彩间进行选择:博彩A:80%的机会得到4000元; 博彩B:100%的机会得到3000元。现在考虑下面两个博彩: 博彩C:20%的机会得到4000元; 博彩D:25%的机会得到3000元。,3)分离效果(isolation effect),问卷的结果显示有78%的受访者选择博彩B,即25%*80%U(4000)25%* 100%U(3000)“。 问卷显示大部分
27、人选择了博彩C。 由此可知道,在两阶段博弈当中个人有短视(myopia)现象,只考虑第二阶段而忽视了第一阶段。 如果根据期望效用理论,这两个博彩的回报是相同的。但是由于问题的叙述方式不同,个人的选择是不同的,这就是框架效应的结果。,展望理论(prospect theory),为了解释这三个现象,卡尼曼和特沃斯基提出了展望理论(prospect theory),用来作为人们在面对不确定性下做决策的模型,来解释传统期望效用理论与实验结果的分歧。他们运用价值函数函数来解释人的行为。,(1)价值函数(Value Function),用来代替效用函数,(1)价值函数定义在相对于参考点的利得和损失上,而不是一般传统理论所重视的期末财富; (2)价值函数为S形,在面对利得时是凹函数,在面对损失时是凸函数; (3)价值函数的损失部分的斜率比利得部分的斜率陡,即投资者在相对应的利得和损失下,边际损失比边际利得敏感,称为禀赋效应(endowment effect)。,价值函数,