1、0电力拖动自动控制系统-运动控制系统实验指导书昆明理工大学信自学院自动化系2012 年 9 月1目 录实验须知实验一双闭环不可逆直流调速系统调试实验二 双闭环不可逆直流调速系统的静特性研究实验三 双闭环不可逆直流调速系统的动特性研究实验四 逻辑无环流可逆直流调速系统实验实验五 矢量坐标变换仿真实验六 转差频率控制的交流异步电动机矢量控制系统仿真实验七 无速度传感器的矢量控制系统仿真附录 1 双闭环不可逆直流调速系统原理图及所需挂件附录 2 逻辑无环流直流可逆调速系统原理图及所需挂件2实 验 须 知实验课是教学中的重要环节之一,通过实验,是理论联系实际,加深理解和巩固所学的有关理论知识,培养、锻
2、炼和提高对实际系统的调试和分析、解决问题的能力,同时通过实验也培养严谨的科学态度和良好的作风,以达到工程技术人员应有的本领,因此要求每个学生必须认真对待实验课,要求做到:一、实验前预习,要求:1、了解所有实验系统的工作原理2、明确实验目的,各项实验内容、步骤和做法3、拟定实验操作步骤,画出实验记录表格等。二、实验中认真、要求:1、熟知所有设备,认真按实验要求,有步骤地进行各项内容的实验。2、测试前,必须熟悉仪器、仪表的使用,注意量程。3、认真记录测试数据和波形。4、不许带电操作,每次更换线路时,必须断点进行操作,通电前,必须经指导老师检查,方可合闸。5、同组同学,必须相互配合,共同完成实验任务
3、。三、实验后认真写实验报告1、整理各项实验数据,列成表格,按要求绘制有关曲线,进行分析比较。2、记录和分析实验中的各种现象。四、实验装置自动控制系统实验全部在 DJDK-型装置上进行。详见“DJDK-实验装置简介”。3实验一 双闭环不可逆直流调速系统调试一、 实验目的1、 掌握调速系统各单元电路的调整方法,弄清他们的工作原理及其在系统中的应用。2、 掌握双闭环不可逆直流调速系统的调试方法和步骤。二、 系统组成及所需挂件详见附录一。三、 实验内容(一)双闭环调速系统调试原则先单元、后系统,即先将单元的参数调好,然后才能组成系统。先开环、后闭环,即先使系统运行在开环状态,然后在确定电流和转速均为负
4、反馈后,才可组成闭环系统。 先内环,后外环,即先调试电流内环,然后调试转速外环。先调整稳态精度,后调整动态指标。(二)DJK02和DJK02-1上的“触发电路”调试 打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动 “触发脉冲指示”钮子开关,使“窄”的发光管亮。观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔
5、左侧),使三相锯齿波斜率尽可能一致。将DJK04上的“给定”输出U g直接与DJK02-1上的移相控制电压U ct相接,将给定开关S 2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使=150(注意此处的表示三相晶闸管电路中的移相角,它的0是从自然换流点开始计算,而单相晶闸管电路的0移相角表示从同步信号过零点开始计算,两者存在相位差,前者比后者滞后30)。4适当增加给定U g的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。用 8 芯的扁平电缆,将 DJK02-1
6、 面板上“触发脉冲输出”和“触发脉冲输入”相连,使得触发脉冲加到正反桥功放的输入端。将DJK02-1面板上的U lf端接地,用20芯的扁平电缆,将DJK02-1的“正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1VT6晶闸管门极和阴极之间的触发脉冲是否正常。(三)控制单元调试移相控制电压Uct调节范围的确定直接将DJK04“给定”电压U g接入DJK02-1移相控制电压U ct的输入端,“三相全控整流”输出接电阻负载R,用示波器观察U d的波形。当给定电压U g由零调大时,U d将随给定电压的增大而增大,当U g超过
7、某一数值时,此时U d接近为输出最高电压值U d,一般可确定“三相全控整流”输出允许范围的最大值为Udmax=0.9Ud,调节U g使得“三相全控整流”输出等于U dmax,此时将对应的U g的电压值记录下来,U ctmax= Ug,即U g的允许调节范围为0U ctmax。如果我们把输出限幅定为U ctmax的话 , 则“三相全控整流”输出范围就被限定,不会工作到极限值状态,保证六个晶闸管可靠工作。记录U g于下表中:UdUdmax=0.9 UdUctmax=Ug将给定退到零,再按“停止”按钮,结束步骤。调节器的调零 将DJK04中“调节器I”所有输入端接地,再将DJK08中的可调电阻120
8、K接到“调节器I”的“4”、“5”两端,用导线将“5”、“6”短接,使“调节器I”成为P (比例 )调节器。用万用表的毫伏档测量调节器I的“7”端的输出,调节面板上的调零电位器RP3,使之电压尽可能接近于零。将DJK04中“调节器II”所有输入端接地,再将DJK08中的可调电阻13K接到“调节器II”的“8”、“9”两端,用导线将“9”、“10”短接,使“调节器5II”成为P(比例)调节器。用万用表的毫伏档测量调节器II的“11”端,调节面板上的调零电位器RP3,使之输出电压尽可能接近于零。调节器正、负限幅值的调整 把“调节器I”的“5”、“6”短接线去掉,将DJK08中的可调电容0.47uF
9、接入“5”、“6”两端,使调节器成为PI (比例积分)调节器,将“调节器I”所有输入端的接地线去掉,将DJK04的给定输出端接到调节器I的“3”端,当加+5V的正给定电压时,调整负限幅电位器RP2,使之输出电压为-6V,当调节器输入端加-5V的负给定电压时,调整正限幅电位器RP1,使之输出电压尽可能接近于零。把“调节器II”的“9”、“10”短接线去掉,将DJK08中的可调电容0.47uF接入“9”、“10”两端,使调节器成为PI(比例积分)调节器,将“调节器II”的所有输入端的接地线去掉,将DJK04的给定输出端接到调节器II的“4”端。当加+5V的正给定电压时,调整负限幅电位器RP2,使之
10、输出电压尽可能接近于零;当调节器输入端加-5V的负给定电压时,调整正限幅电位器RP1,使调节器I的输出正限幅为U ctmax。电流反馈系数的整定直接将“给定”电压U g接入DJK02-1移相控制电压U ct的输入端,整流桥输出接电阻负载R,负载电阻放在最大值,输出给定调到零。按下启动按钮,从零增加给定,使输出电压升高,当U d=220V时,减小负载的阻值,调节“电流反馈与过流保护”上的电流反馈电位器RP1,使得负载电流Id=l.3A时,“2”端I f的的电流反馈电压U fi=6V,这时的电流反馈系数= Ufi/Id= 4.615V/A。转速反馈系数的整定直接将“给定”电压U g接DJK02-1
11、上的移相控制电压U ct的输入端,“三相全控整流”电路接直流电动机负载,L d用DJK02上的200mH,输出给定调到零。按下启动按钮,接通励磁电源,从零逐渐增加给定,使电机提速到 n =150Orpm 时,调节“转速变换”上转速反馈电位器 RP1,使得该转速时反馈电压 Ufn=-6V,这时的转速反馈系数 =U fn/n =0.004V/(rpm)。(四)系统调试6(1)开环电阻性负载ASR、AST 接成 1:1 的比例调节器,断开反馈线,给定电位器从零慢慢增加,用示波器观察输出电压波形,波头是否整齐,有无缺相。(2)开环电动机负载去掉电阻负载,接入电动机电枢,激磁绕组加入额定电压,发电机作为
12、电动机负载,给定电位器置于零位,合上电源,逐渐增加给定电压,让电机转起来,稳态转速的高低,决定于给定电压的大小。四、实验报告1、根据实验要求,画出原理图。2、记下每一步调试的结果,总结调试的步骤的方法。3、对试验结果进行分析讨论。(1)为什么鉴别电源的相序?如果相序反了,会出现什么现象?(2)可控硅整流装置能否不接负载进行调试,为什么?(3)两个调节器的限幅值分别起什么作用?五、注意事项(1)双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。为此,为了保证测量的顺利
13、进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。(2)电机启动前,应先加上电动机的励磁,才能使电机启动。在启动前必须将移相控制电压调到零,使整流输出电压为零,这时才可以逐渐加大给定电压,不能在开环或速度闭环时突加给定,否则会引起过大的启动电流,使过流保护动作,告警,跳闸。(3)通电实验时,可先用电阻作为整流桥的负载,待确定电路能正常工作后,再换成电动机作为负载。7(4)在连接反馈信号时,
14、给定信号的极性必须与反馈信号的极性相反,确保为负反馈,否则会造成失控。(5)在完成电压单闭环直流调速系统实验时,由于晶闸管整流输出的波形不仅有直流成分,同时还包含有大量的交流信号,所以在电压隔离器输出端必须要接电容进行滤波,否则系统必定会发生震荡。(6)直流电动机的电枢电流不要超过额定值使用,转速也不要超过 1.2 倍的额定值。以免影响电机的使用寿命,或发生意外。(7)DJK04 与 DJK02-1 不共地,所以实验时须短接 DJK04 与 DJK02-1 的地。8实验二 双闭环不可逆直流调速系统的静特性研究一、 实验目的了解双闭环不可逆直流调速系统的开环机械特性和闭环有静差及无静差系统的静特
15、性。二、系统组成及所需挂件详见附录一。二、 实验内容1、系统调试参照实验一调试方法调试。2、开环外特性的测定DJK02-1控制电压U ct由DJK04上的给定输出U g直接接入,“三相全控整流”电路接电动机,L d用DJK02上的200mH,直流发电机接负载电阻R,负载电阻放在最大值,输出给定调到零。按下启动按钮,先接通励磁电源,然后从零开始逐渐增加“给定”电压Ug,使电机启动升速,转速到达1200rpm。增大负载(即减小负载电阻R阻值),使得电动机电流I d=Ied,可测出该系统的开环外特性n =f(I d),记录于下表中:n(rpm)Id(A)将给定退到零,断开励磁电源,按下停止按钮,结束
16、实验。3、双闭环有静差系统静特性测试按附录一接线, DJK04的给定电压U g输出为正给定,转速反馈电压为负电压,直流发电机接负载电阻R,L d用DJK02上的200mH,负载电阻放在最大值,给定的输出调到零。将“调节器I”、“调节器II”都接成P(比例)调节器后,9接入系统,形成双闭环不可逆系统,按下启动按钮,接通励磁电源,构成实验系统。机械特性n =f(I d)的测定A、发电机先空载,从零开始逐渐调大给定电压U g,使电动机转速接近n=l200rpm,然后接入发电机负载电阻R,逐渐改变负载电阻,直至I d=Ied,即可测出系统静态特性曲线n =f(I d),并记录于下表中:n(rpm)Id
17、(A)B、降低U g,再测试n=800rpm时的静态特性曲线,并记录于下表中:n(rpm)Id(A)4、双闭环无静差系统静特性测试将“调节器I”、“调节器II”都接成P(比例)调节器后,接入系统,形成双闭环不可逆系统,按下启动按钮,接通励磁电源,构成实验系统。机械特性n =f(I d)的测定A、发电机先空载,从零开始逐渐调大给定电压U g,使电动机转速接近n=l200rpm,然后接入发电机负载电阻R,逐渐改变负载电阻,直至I d=Ied,即可测出系统静态特性曲线n =f(I d),并记录于下表中:n(rpm)Id(A)B、降低U g,再测试n=800rpm时的静态特性曲线,并记录于下表中:n(
18、rpm)Id(A)C、闭环控制系统n=f(U g)的测定调节U g及R,使I d=Ied、n= l200rpm,逐渐降低U g,记录U g和n,即可测出闭环控制特性n = f(U g)。 10n(rpm)Ug(V)四、实验报告1、按实验要求列表记录实验数据,并将静特性绘制在坐标纸上。2、根据实验结果比较开环系统、闭环有静差系统及闭环无静差调速系统的静特性。3、讨论双闭环调速系统实验时,遇到下列情况会出现什么现象?a) 电流反馈极性接反。b) 转速反馈极性接反。c) 起动时 ASR 未饱和。d) 起动过程中 ACR 达到饱和。11实验三 双闭环不可逆直流调速系统的动特性研究一、 实验目的1、了解
19、双环系统动态特性的调试步骤和方法。2、了解调节器参数对系统动态性能的影响。二、系统组成及所需挂件详见附录一。三、实验内容1、系统调试参照实验一调试方法调试。2、系统动态特性的观察用慢扫描示波器观察动态波形。在不同的系统参数下(“调节器I”的增益和积分电容、“调节器II”的增益和积分电容、“转速变换”的滤波电容),用示波器观察、并记录下列动态波形: 突加给定U g, 电动机启动时的电枢电流I d(“电流反馈与过流保护”的“2”端)波形和转速n(“转速变换”的“3”端)波形。突加额定负载(20%I ed100%Ied)时电动机电枢电流波形和转速波形。突降负载(100%I ed20%Ied)时电动机
20、的电枢电流波形和转速波形。四、实验报告:1、 绘制所记录的波形。2、 分析系统动态波形,讨论系统参数的变化对系统动、静态性能的影响。3、 对本实验有何建议和体会。12实验四 逻辑无环流可逆直流调速系统实验一、实验目的(1)了解、熟悉逻辑无环流可逆直流调速系统的原理和组成。(2)掌握逻辑无环流可逆直流调速系统的调试步骤和方法。二、实验所需挂件及附件详见附录二。三、实验内容(1)逻辑无环流调速系统调试原则先单元、后系统,即先将单元的参数调好,然后才能组成系统。先开环、后闭环,即先使系统运行在开环状态,然后在确定电流和转速均为负反馈后才可组成闭环系统。先双闭环、后逻辑无环流,即先使正反桥的双闭环正常
21、工作,然后再组成逻辑无环流。先调整稳态精度,后调动态指标。(2)DJK02和DJK02-1上的“触发电路”调试 打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动 “触发脉冲指示”钮子开关,使“窄”的发光管亮。观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。将DJK04上的“
22、给定”输出U g直接与DJK02-1上的移相控制电压U ct相接,将给定开关S 2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用13双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使=150(注意此处的表示三相晶闸管电路中的移相角,它的0是从自然换流点开始计算,而单相晶闸管电路的0移相角表示从同步信号过零点开始计算,两者存在相位差,前者比后者滞后30)。适当增加给定U g的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。用 8 芯的扁平电缆,将 DJK02-1 面板上“触发脉冲输出”和“触发脉冲输入”相连,使得
23、触发脉冲加到正反桥功放的输入端。将DJK02-1面板上的U lf端接地,用20芯的扁平电缆,将DJK02-1的“正、反桥触发脉冲输出”端和DJK02“正、反桥触发脉冲输入”端相连,分别将DJK02正桥和反桥触发脉冲的六个开关拨至“通”,观察正桥VT1VT6和反桥VT1VT6的晶闸管的门极和阴极之间的触发脉冲是否正常。(3)控制单元调试 移相控制电压U ct调节范围的确定 直接将DJK04“给定”电压U g接入DJK02-1移相控制电压U ct的输入端,“三相全控整流”输出接电阻负载R,用示波器观察U d的波形。当给定电压U g由零调大时,U d将随给定电压的增大而增大,当U g超过某一数值时,
24、此时U d接近为输出最高电压值U d,一般可确定“三相全控整流”输出允许范围的最大值为Udmax=0.9Ud,调节U g使得“三相全控整流”输出等于U dmax,此时将对应的U g的电压值记录下来,U ctmax= Ug,即U g的允许调节范围为0U ctmax。如果我们把输出限幅定为U ctmax的话 , 则“三相全控整流”输出范围就被限定,不会工作到极限值状态,保证六个晶闸管可靠工作。记录U g于下表中:UdUdmax=0.9 UdUctmax=Ug将给定退到零,再按“停止”按钮,结束步骤。调节器的调零 将DJK04中“调节器I”所有输入端接地,再将DJK08中的可调电阻120K接到“调节
25、器I”的“4”、“5”两端,用导线将“5”、“6”短接,使“调节器14I”成为P (比例)调节器。用万用表的毫伏档测量调节器II“7”端的输出,调节面板上的调零电位器RP3,使之输出电压尽可能接近于零。将DJK04中“调节器II”所有输入端接地,再将DJK08中的可调电阻13K接到“调节器II”的“8”、“9”两端,用导线将“9”、“10”短接,使“调节器II”成为P(比例)调节器。用万用表的毫伏档测量调节器II的“11”端,调节面板上的调零电位器RP3,使之输出电压尽可能接近于零。调节器正、负限幅值的调整 把“调节器I”的“5”、“6”短接线去掉,将DJK08中的可调电容0.47uF接入“5
26、”、“6”两端,使调节器成为PI (比例积分)调节器,将“调节器I”的所有输入端的接地线去掉,将DJK04的给定输出端接到调节器I的“3”端,当加+5V的正给定电压时,调整负限幅电位器RP2,使之输出电压为-6V;当调节器输入端加-5V的负给定电压时,调整正限幅电位器RP1,使之输出电压为+6V。把“调节器II”的“9”、“10”短接线去掉,将DJK08中的可调电容0.47uF接入“9”、“10”两端,使调节器成为PI(比例积分)调节器,将“调节器II”的所有输入端的接地线去掉,将DJK04的给定输出端接到调节器II的“4”端。当加+5V的正给定电压时,调整负限幅电位器RP2,使之输出电压尽可
27、能接近于零;当调节器输入端加-5V的负给定电压时,调整正限幅电位器RP1,使调节器的输出正限幅为U ctmax。“转矩极性鉴别”的调试 “转矩极性鉴别”的输出有下列要求:电机正转,输出U M为“1”态。电机反转,输出U M为“0”态。将DJK04中的给定输出端接至DJK04-1的“转矩极性鉴别”的输入端,同时在输入端接上万用表以监视输入电压的大小,示波器探头接至“转矩极性鉴别”的输出端,观察其输出高、低电平的变化。“转矩极性鉴别”的输入输出特性应满足右图所示要求,其中U r1=-0.25V,U r2=+0.25V。“零电平检测”的调试 其输出应有下列要求:12V UrUc12V UcUr0.4
28、V15主回路电流接近零,输出U I为“1”态。主回路有电流,输出U I为“0”态。其调整方法与“转矩极性鉴别”的调整方法相同,输入输出特性应满足图1-27b所示要求,其中U sr1=0.2V,U sr2=0.6V。“反号器”的调试A、调零(在出厂前反号器已调零,如果零漂比较大的话,用户可自行将挂件打开调零),将反号器输入端“1”接地,用万用表的毫伏档测量“2”端,观察输出是否为零,如果不为零,则调节线路板上的电位器使之为最小值。B、测定输入输出的比例,将反号器输入端“1”接“给定”,调节“给定”输出为5V电压,用万用表测量“2”端,输出是否等于-5V电压,如果两者不等,则通过调节RP1使输出等
29、于负的输入。再调节“给定”电压使输出为-5V电压,观测反号器输出是否为5V。“逻辑控制”的调试测试逻辑功能,列出真值表,真值表应符合下表:UM 1 1 0 0 0 1输入UI 1 0 0 1 0 0UZ(U ) 0 0 0 1 1 1输出UF(U ) 1 1 1 0 0 0调试方法:A、首先将“零电平检测” 、 “转矩极性鉴别”调节到位,符合其特性曲线。给定接“转矩极性鉴别”的输入端,输出端接“逻辑控制”的 Um。 “零电平检测”的输出端接“逻辑控制”的 UI,输入端接地。B、将给定的 RP1、RP2 电位器顺时针转到底,将 S2 打到运行侧。C、将 S1 打到正给定侧,用万用表测量“逻辑控制
30、”的“3” 、 “6”和“4” 、“7”端, “3”、 “6”端输出应为高电平, “4”、 “7”端输出应为低电平,此时将DJK04 中给定部分 S1 开关从正给定打到负给定侧,则“3” 、 “6”端输出从高电平跳变为低电平, “4”、 “7”端输出也从低电平跳变为高电平。在跳变的过程中的“5” ,此时用示波器观测应出现脉冲信号。16D、将“零电平检测”的输入端接高电平,此时将DJK04中给定部分S1开关来回扳动, “逻辑控制”的输出应无变化。转速反馈系数和电流反馈系数的整定 直接将给定电压U g接入DJK02-1上的移相控制电压U ct的输入端,整流桥接电阻负载,测量负载电流和电流反馈电压,
31、调节“电流反馈与过流保护”上的电流反馈电位器RP1,使得负载电流I d =l.3A时, “电流反馈与过流保护”的“2”端电流反馈电压U fi=6V,这时的电流反馈系数= U fi/Id= 4.615V/A。直接将“给定”电压U g接入DJK02-1移相控制电压U ct的输入端,“三相全控整流”电路接直流电动机作负载,测量直流电动机的转速和转速反馈电压值,调节“转速变换”上的转速反馈电位器RP1,使得n =150Orpm时,转速反馈电压Ufn=-6V,这时的转速反馈系数 =U fn/n =0.004V/(rpm)。(4)系统调试根据图5-11接线,组成逻辑无环流可逆直流调速实验系统,首先将控制电
32、路接成开环(即DJK02-1的移相控制电压U ct由DJK04的“给定”直接提供),要注意的是U lf,Ulr不可同时接地,因为正桥和反桥首尾相连,加上给定电压时,正桥和反桥的整流电路会同时开始工作,造成两个整流电路直接发生短路,电流迅速增大,要么DJK04上的过流保护报警跳闸,要么烧毁保护晶闸管的保险丝,甚至还有可能会烧坏晶闸管。所以较好的方法是对正桥和反桥分别进行测试:先将DJK02-1的U lf接地,U lr悬空,慢慢增加DJK04的“给定”值,使电机开始提速,观测“三相全控整流”的输出电压是否能达到250V左右(注意:这段时间一定要短,以防止电机转速过高导致电刷损坏);正桥测试好后将D
33、JK02-1的Ulr接地,U lf悬空,同样慢慢增加DJK04的给定电压值,使电机开始提速,观测整流桥的输出电压是否能达到250V左右。开环测试好后,开始测试双闭环,U lf和U lr同样不可同时接地。DJK02-1的移相控制电压U ct由DJK04“调节器II”的“11”端提供,先将DJK02-1的U lf接地,Ulr悬空,慢慢增加DJK04的给定电压值,观测电机是否受控制(速度随给定的电压变化而变化)。正桥测试好,将DJK02-1的U lr接地,U lf悬空,观测电机是否受控制(注意:转速反馈的极性必须互换一下,否则造成速度正反馈,电机会失控)。17(5)系统动态波形的观察用双踪慢扫描示波
34、器观察电动机电枢电流I d和转速n的动态波形,两个探头分别接至“电流反馈与过流保护”的“2”端和“转速变换”的“3”端。给定值阶跃变化(正向启动正向停车反向启动反向切换到正向正向切换到反向反向停车)时的I d、n的动态波形。改变调节器I和调节器II的参数,观察动态波形的变化。四、实验报告1、分析调节器I、调节器II参数变化对系统动态过程的影响。2、分析电机从正转切换到反转过程中,电机经历的工作状态,系统能量转换情况。3、思考题(1)逻辑无环流可逆调速系统对逻辑控制有何要求?(2)思考逻辑无环流可逆调速系统中“推”环节的组成原理和作用如何?五、注意事项(1)参见实验一的注意事项。(2)在记录动态
35、波形时,可先用双踪慢扫描示波器观察波形,以便找出系统动态特性较为理想的调节器参数,再用数字储存式示波器记录动态波形。(3)实验时,应保证“逻辑控制”工作逻辑正确后才能使系统正反向切换运行。(4)DJK04、DJK04-1与DJK02-1不共地,所以实验时须短接DJK04、DJK04-1与DJK02-1的地。18实验五 矢量坐标变换仿真1 实验目的1. 学习矢量坐标变换方法。 2. 了解交流电动机矢量控制方式。2 实验软件平台仿真模型平台为 Matlab7.1 版本3 实验原理模型图 5-1 3 相电压的 3s/2s 和 3s/2r 变换模型图 5-1 为 3 相电压的 3s/2s 和 3s/2
36、r 变换实验模型,实验模型中调用了两个 abc-to-dq0transformation 模块,调用的 abc-to-dq0 模块有两个输入端和一个输出端。输入端 abc 连接需变换的三相信号,输入端 sin-cos 为 d-q 坐标系 d 轴与静止坐标系 A 轴之间夹角 的正、余弦信号,输出端 dq0 输出变换后的 d 轴和 q 轴分量以及 0 轴分量。在模型中三相电压信号由可编程信号源(3-phase programmable source)产生,夹角 由时钟(Clock) 、常数(constant)模块产生, ,并经 sin、cos 模块产生正、余弦信号。=2模型中的两个 abc-to-
37、dq0 模块,一个用于 3s/2s 变换,另一个用于 3s/2r 变换。用于3s/2s 变换时,设置常数模块值为零,即 ,这意味着 d-q 坐标系的 d 轴与静止坐=019标系 A 轴重合,d-q 坐标系不旋转,这时 d-q 坐标系已蜕化为静止的 坐标系,abc-to-dq0 模块现在实现的是 3s/2s 变换。用于 3s/2r 变换时,设置常数模块值为 314,即。=2=2504 实验内容使用 simulink 电器元件方式进行仿真,适当增大或减小三相电源电压参数,观察各电压大小变化。5 仿真参数模块 仿真参数206 实验结果仿真结果如图 5-2 所示。其中图 5-1a 为变换前的三相电压,
38、图 5-2b 为经 3s/2s 变换后静止二相坐标系上的电压波形,这二相电压互差 90 .图 5-2c 为经 3s/2r 变换后旋转二相坐标系上的电压波形,由于所选角频率 ,与电源角频率同步,所以在二相同步旋转=2坐标系上的电压已经是直流。图 5-2 电压变换波形a)变换前的三相电压波形 b)经 3s/2s 变换后的电压波形 c)经 3s/2r 变换后的电压波形21实验六 转差频率控制的交流异步电动机矢量控制系统仿真1 实验目的1. 学习转差频率控制的交流异步电动机矢量控制 方法。 2. 了解交流电动机矢量控制方式。2 实验软件平台仿真模型平台为 Matlab7.1 版本3 实验原理及模型图
39、6-1 转差频率控制的矢量控制系统原理转差频率控制的矢量控制系统原理图如图 6-1 所示。该系统主电路采用了 SPWM 电压型逆变器,这是通用变频器常用的方案。转速采取了转差频率控制,即异步机定子角频率由转子角频率 和转差角频率 组成( ) ,这样在转速变化过程中,电动机1 1=+的定子电流频率始终能随转子的实际转速同步升降,使转速的调节更为平滑。上述转差频率控制的矢量控制系统的仿真模型如图 6-2 所示。22图 6-2 转差频率控制的矢量控制系统仿真模型系统的控制部分由给定、PI 调节器、函数运算、二相/三相坐标变换、PWM 脉冲发生器等环节组成。其中给定环节有定子电流励磁分量 im*和转子
40、速度 n*。放大器 G1、G2 和积分器组成了带限幅的转速调节器 ASR。电流电压模型转换由函数 Um*、Ut *模块实现。函数运算模块 ws*根据定子电流的励磁分量和转矩分量计算转差 根据定子电流的励磁分量和转矩分量计算转差 ,并与转子频率 相加得到定子频率 ,再经积分器得到定子电 1压矢量转角 。模块 sin、cos 、dq0/abc 实现了二相旋转坐标系至三相静止坐标系的变换。4 实验内容电机参数:380V、50HZ、2 对极、Rs=0.435、L 1s=0.002mH,Rr=0.816、L lr=0.002mH、 Lm=0.069mH、J=0.19kgm 2。逆变器直流电源 510V。
41、定子绕组自感 Ls=Lm+Lls=(0.069+0.002) mH=0.071mH;转子绕组自感 Lr=Lm+Llr=(0.069+0.002) mH=0.007mH;漏磁系数 =1-Lm 2/LsLr=0.056;转子时间常数 Tr=Lr/Rr=0.071/0.086=0.087。使用 simulink 电器元件方式进行仿真,适当增大或减小直流电源电压参数以及阶跃负载大小,观察转速,电流变化。235 仿真参数模块 仿真参数242526272829各放大器参数放大器 放大倍数 备注G1 35G2 0.15G3 0.0076G4 2 极对数G5、G6 9.556 实验结果仿真给定转速为 1400
42、r/min 时的空载起动的过程,在起动后 0.45s 加载 TL=65Nm。选择固定步长算法 ode5,步长取 10-5。模型仿结果如图 6-3 所示。在仿真结果中,图 6-3 a)d)反映了在起动和加载过程中电动机的转速、电流、电压和转矩的变化过程,在起动中,逆变器输出电压(线电压)逐步提高,转速上升,但是电流基本保持不变,I s 35A,电动机以给定的最大电流起动。在 0.39s 时,转50/2=速稍有超调后稳定在 1400r/min,电流也下降为空载电流,逆变器输出电压也减小了。电动机在加载后电流和电压迅速上升,电动机转矩也随之增加,转速在略经调整后恢复不变。图 6-3 f) i)反映了各控制模块输出信号波形的变化,经 2r/3s 变换后的三相调制信号(u abc)的幅值和频率在调节过程中是逐步增加的,随频率的增加,转速逐步提高,信号幅