收藏 分享(赏)

食品质量安全抽检数据分析模型.doc

上传人:buyk185 文档编号:6984041 上传时间:2019-04-29 格式:DOC 页数:20 大小:316.23KB
下载 相关 举报
食品质量安全抽检数据分析模型.doc_第1页
第1页 / 共20页
食品质量安全抽检数据分析模型.doc_第2页
第2页 / 共20页
食品质量安全抽检数据分析模型.doc_第3页
第3页 / 共20页
食品质量安全抽检数据分析模型.doc_第4页
第4页 / 共20页
食品质量安全抽检数据分析模型.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、研究生数学建模竞赛论文参赛成员王磊 赵晓飞 董晓慧 dongxiaohuibipt.edu2013 年 5 月 26 日1食品质量安全抽检数据分析模型摘要结合深圳市市场监督管理局网站给出的最近三年的食品安全抽查情况,通过整理数据,确定影响食品安全的主要因素是添加剂,细菌,重金属和其他因素,在此基础上建立模型。针对问题一:对主要食品领域的食品质量问题进行统计分析,运用 matlab 进行插值拟合,可以形象的观察出近三年的导致食品安全的不合格项的走势以及总体不合格情况的走势,可以形象的看出食品安全的走势。总体形势为 2010 年情况不错,2011 年情况有些恶化,2012 年的食品质量又有所好转

2、。针对问题二:建立了有关相关性的模糊数学模型,得出了四种指标对引起食品安全问题的比例,其中季节因素中一、四季度的问题严重,其他因素造成的比例关系为流通环节最严重,其次为餐饮环节再次为生产环节。相关检测部门可以根据这些情况进行针对性的问题检查。针对问题三:为了减少抽检次数提高抽检质量,通过对检测数据分析,通过建立了层次分析的模型来直观性的分析问题。关键词:食品安全,线性回归,模糊数学,层次分析2The sampling data analysis model of food quality and safetyAbstractThrough the food safety situation i

3、n the last three years given by the website of Shenzhen market supervision administration, then with the analysis of the data, the main factors affecting food safety can be determined, including additive, bacteria, heavy metals and other factors. Therefore, a model is established based on the above

4、condition.Question one: make a statistical analysis of food quality issues in the areas of main food; use MATLAB to make interpolation fitting, and you can observe the result of nearly three years of food safety trends and the overall trend, you can see trends of food unsafe condition. Overall good

5、situation is in 2010; in 2011, there is some deterioration in the situation, but in 2012, the food quality has improved.Question two: set up a mathematical model of fuzzy mathematics; get the proportion about the influence of four indicators on food safety issues. For example, there are serious prob

6、lems on the first and fourth quarter, and other factors resulting in the most serious problem is in the link of market and circulation, followed by the catering link and then the production link. Testing sector can be targeted according to these checks.Question three: in order to reduce the sampling

7、 frequency and improve sampling quality through data analysis, to establish an analytic model for visual analysis of the issue is necessary.Key words: food safety, linear regression, fuzzy mathematics, analytical hierarchy process3一、问题的提出1.1 问题背景“民以食为天” ,食品安全关系到千家万户的生活与健康。随着人们对生活质量的追求和安全意思的提高,食品安全已成

8、为社会关注的热点,也是政府民生工程的一个主题。城市食品的来源越来越广泛,人们消费加工好的食品的比例也越来越高,因此除食材的生产收获外,食品的运输、加工、包装、贮存、销售以及餐饮等每一个环节皆可能影响食品的质量与安全。另一方面,食品质量与安全又是一个专业性很强的问题,其标准的制定和抽样检测及评价都需要科学有效的方法。深圳是食品抽检、监督最统一、最规范、最公开的城市之一。请下载2010年、2011年和 2012年深圳市的食品抽检数据(注意蔬菜、鱼类、鸡鸭等抽检数据的获取) ,并根据这些资料来讨论。1.2 参考数据数据下载网站:(深圳市市场监督管理局网站) 。1.3 需解决的问题:问题一、如何评价深

9、圳市这三年各主要食品领域微生物、重金属、添加剂含量等安全情况的变化趋势;问题二、从这些数据中能否找出某些规律性的东西:如食品产地与食品质量的关系;食品销售地点(即抽检地点)与食品质量的关系;季节因素等等;问题三、能否改进食品抽检的办法,使之更科学更有效地反映食品质量状况且不过分增加监管成本(食品抽检是需要费用的) ,例如对于抽检结果稳定且抽检频次过高的食品领域该作怎样的调整?二、问题分析2.1 问题一:本问题难点是如何建立合适模型确定这三年主要食品领域微生物、重金属、4添加剂含量等安全情况的变化趋势。我们先对参考数据进行整理分析,主要对主要食品领域的几种生活必须食物的抽检次数、抽检不合格数以及

10、不合格的原因进行统计。利用 MATLAB 对数据进行插值拟合,确定发展趋势。2.2 问题二:要求分析影响食品安全的因素,根据统计的数据得出影响食品安全的因素有四个:食品产地、食品销售、餐饮环节以及季节因素。对着四个因素,我们通过利用查处的平均单月不合格次数建立相关性表格, (严重影响,中度影响,轻度影响,不影响)利用模糊数学的相关知识建立数学模型,得出个影响食品安全因素的权重比,再根据这些因素来发现规律。2.3 问题三:要求改进食品抽检的办法,使之更加科学的反应食品状况而且又不增加成本,减少一下抽检频率高而且又很稳定的食品领域的抽检次数。利用层次分析的数学模型来通过检验次数最少而发现问题的可能

11、最大化。三、模型假设3.1 模型假设条件1. 每次抽检所需的费用相同。2. 总体的合格率和局部某项的合格率相互影响。3. 不考虑天灾人祸等情况导致的不合格情况。四、定义与符号说明4.1 定义与符号说明y:每个季度对应的不合格率;y1:添加剂导致的每个季度的不合格率;y 2:细菌导致的每个季度的不合格率;5y3:重金属导致的每个季度的不合格率;y4:其他因素造成的每个季度的不合格率;x,x1,x2,x3,x4:从2010年1月到2012年12月的12个季度。五、模型的建立与求解从解决问题的原则出发,我们一共建立了四个模型。模型一:线性回规模型本模型主要是求解这三年的食品安全的变化趋势和各因素的变

12、化趋势。模型二:模糊数学根据抽检出来的食品质量情况,可以判断食品生产,食品销售,餐饮服务和极度对食品安全有一定的关系,确定出各因素在食品安全里面的相关性。模型三:层次分析本模型根据整理的数据,分析最大优化情况,建立层次图来分析问题。5.1 问题一5.1.1 模型准备考虑近三年的食品安全的趋势,我们首先在参考数据中,抽取影响最近三年食品安全的各因素所占有的不合格率百分比,在以年为单位对数据进行累加求和,确定每年的不合格百分比。5.1.2 影响因子与时间关系的确定(1)012(,)myxN:式中 都是与 无关的未知参数,其中 称201,m 12,mx 01,m为回归系数。现得到 n 个独立观测数据

13、( ) ,i=1, ,n,nm,由(1)得1 ,iiy 6(2)012(,),i myxxNin:记 , (3)11mnnxX 1nyY101,TTm (1)表为 (4)2(0,)nYXNE:其中 为 n 阶单位矩阵。E参数估计模型(1)中的参数 仍用最小二乘法估计,即应选取估计值 ,01,m j使 当时, j=0,1,2, ,m 时,误差平方和jj(5)2 20111()nniimiiQyx达到最小值。为此,令 0,2,j n得(6)0110012()0,12,niimiiniiijijQyx 经整理化为以下正规方程组7(7)01211102122 111120 2211111nnnniim

14、iinnnnniii iminnnnnimimimiixxyi xxxx y 正规方程组的矩阵形式为(8)TTXY当矩阵 X 列满秩时, 为可逆矩阵, (8)式的解为(9)1()T把 代回原模型得到 y 的估计值(10)01mx而这组数据的拟合值为 ,拟合误差 e=Y- 称为残差,可作为随机误YXY差 的估计,而(11)221()niiQey为残差平方和(或剩余平方和) ,即 。()QLinear(线性) : 01myxxPurequadratic(纯二次) : 2011mjjxInteraction(交叉) : 011mjkjmyxxQuadratic(完全二次): 01 1,jkjkx5.

15、1.3 分别用 MATLAB 拟合出 y,y1,y2,y3,y4 与 x 的关系得出拟合图如下:8添加剂问题食品比例与时间的关系:拟合函数为:f(x) = p1*x3 + p2*x2 + p3*x + p4p1 = 0.01292 (-0.02345, 0.04928)p2 = -0.3269 (-1.044, 0.3902)p3 = 2.205 (-1.89, 6.3)p4 = -0.2562 (-6.66, 6.147)细菌问题实物比例与时间的关系拟合函数为: f(x) = p1*x + p2p1 = 0.01 (-0.07609, 0.09609)p2 = 0.6 (-0.03362,

16、1.234)重金属问题实物比例与时间的关系9拟合函数为:f(x) = p1*x + p2p1 = -0.021 (-0.1217, 0.07967)p2 = 0.292 (-0.4489, 1.033)其他因素不合格食品所占比率与时间的关系拟合函数为: f(x) = p1*x2 + p2*x + p3p1 = 0.03278 (-0.0106, 0.07616)p2 = -0.5694 (-1.149, 0.009867)p3 = 2.488 (0.8498, 4.126)总食品检测问题率与时间的函数关系10拟合函数为:f(x) = p1*x2 + p2*x + p3p1 = -0.04487

17、 (-0.1386, 0.04884)p2 = 0.4765 (-0.7749, 1.728)p3 = 2.177 (-1.362, 5.715)5.1.6 结论与分析根据本文的研究结果我们得出:影响食品安全的添加剂问题在最近三年的变化情况是先增加后降低;细菌问题总体是增加的形势,并且在每年的 2,3 季度细菌的波动性很大,分析可能因为温度升高导致的细菌数增加;重金属问题总体是降低的趋势,原因可能是重金属对人体的损害最大,相关部门对重金属的检测力度和惩罚程度的提高,使得重金属导致的不合格食品在最近三年的总体降低;其他因素总体趋势是先降低后增加的,可以分析为很多不确定性,比如包装问题,酸值过高或

18、者食品配方问题,相关部门需要多约束厂家需要多多注意。5.2、问题二的求解5.2.1 模型准备根据参考数据可以得出影响安全的四个因素:生产环节、消费环节、餐饮环节、季度。要分析这些因素对食品安全有何关系,对此问题我们利用模糊数学的相关知识建立数学模型。设因素集=生产环节、消费环节、餐饮环节、季度11决策集=严重食品问题、中度食品问题、轻度食品问题、没有问题,其中对合格率在 98%以上为轻度问题,98%-95%是重度问题,95%以下为重度问题,100%为没有问题。这是一个多因素的评价问题。我们先解决单因素的评判5.2.2 模型求解因素 1、生产因素:年份 10 年 11 年 12 年不合格比例(%

19、)1.4 3.2 1.6根据每年生产因素导致的食品不合格率百分比:严重问题 中度问题 轻度问题 没有问题0 1/3 2/3 0这样可得出决策集:R1=1/3,2/3,0,0 同理可得其余四个因素的评价:因素 2、流通环节:年份 10 年 11 年 12 年不合格比例(%) 2.5 6.6 6.9根据每年流通因素导致的食品不合格率百分比:严重问题 中度问题 轻度问题 没有问题2/3 1/3 0 0决策集:R2=2/3,1/3,0,0 因素 3、餐饮环节:年份 10 年 11 年 12 年不合格比例(%) 3.1 6.6 1.7根据每年餐饮因素导致的食品不合格率百分比:严重问题 中度问题 轻度问题

20、 没有问题1/3 1/3 1/3 012决策集:R3=1/3,1/3,1/3,0 并由以上 3 个单因素决策集构成一个矩阵 R1203211033R对因素集的确定如下:可对食品安全因素的综合判断为:b=R o a对于 b 进行归一化处理为b=1/3,1/3,1/3由 b 值知,a=0.24 0.43 0.33 ,对此我们可以得到影响食品质量比重最大的是流通环节,其次是餐饮再次是生产。因素 4、季度因素:季度 1 季度 2 季度 3 季度 4 季度不合格比例(%)5.4 2.7 3.3 4.0对于季节因素对产品质量的影响,通过建立的模型可以看出,在一、四季度的食品安全问题明显比其他三个季度的问题

21、大,考虑因素可能为一季度对食品需求量的增大使得很多环节的食品质量安全没有把握好导致问题的出现,不过对于2、3 季度的食品安全问题,主要体现在温度高导致的很多食品的细菌量增加,进而使得整个季度的不合格率很高。5.2.3 模型结论与分析通过建立的灰色模型对问题的分析,可以很明显的看出影响食品安全率上面流通环节最大,其次为餐饮环节,再次为生产环节。季节因素对食品安全也有响应的影响,再次我们没有把季度于其他三个因素进行对比分析,考虑季节因素的问题是一直伴随食品安全的问题的,所以进行单独讨论,通过数据分许,看以很13明显的看出一、四的不合格率明显比二、三季度大,所以检测部门可以通过针对性抽查,比如节日等

22、问题。5.3 问题三的求解通过问题一,问题二,建立的模型我们对影响食品安全的各个因素进行分析,(分析框架图如下图所示)食品评价其他因素重金属细菌添加剂餐饮环节流通环节生产环节季节通过对上面的流程图我们可以看出,要控制食品质量问题,只需要控制好生产环节,流通环节和餐饮环节以及季节时的食品质量问题。通过模型二得出的三个因素的比重和不同季节因素的分析,可以在具体抽查中,抽查数量的先后顺序可以按照流通环节,餐饮环节,生产环节进行安排。在不同季节中重点多抽查一、四季度的数量,不过在二三季度中要多抽查即时食物的抽查。对于一些多次查处而又很少出现问题的食物,我们通过如下层次图来进行分析。生产环节 流通环节

23、餐饮环节14其中参考食品安全局对食品的分类,一类事物:新鲜食物,水果,蔬菜,乳制品,鲜肉,鱼类等;二类食物:即食食物,油炸食品,散装食品;三类食品 蛋类,米面,油,包装肉制品;四类食品:包装食品,包括坚果类等。通过对上面事物的分类,检测部门可以根据食物的分类进行分别重点性分析,其中食物类别越低说明食物安全类别越低,需要多抽查检测。对于食品安全类别高的食物可以减少抽检次数。六、模型的评价与推广6.1 模型的评价6.1.1 模型的优点1) 数据处理:对于缺少的数据我们采用插值拟合的方法得出缺失数据。对部分数据依据求平均的方法得出,这样更具有概括性。2) 模型建立:模型二中应用模糊数学的方法对各个因

24、素进行综合评价,得出各因素所占的权重,从而可以作为检测部门的参考点。3) 对于问题三采用了层次分析的模型,考虑的方面也比较全面,模型的可信度高。6.1.2 模型的不足1) 参考的数据不多,有一定程度受特殊情况的影响,2) 考虑某些因素时带有个人主观因素。3) 没有进行误差分析。6.2 模型的推广该模型运用了拟合和综合评价等知识,对于此模型可类似的运用在有多个因素需要考虑的决策分析上,以及根据一些相关数据得出食品安全的趋势变化。可一类食物 二类食物 三类食物 四类食物15以对检测部门进行食品安全检测过程中起到参考作用,可以用于推广到其他类似问题的求解。16参考文献1 韩中庚. 数学建模方法及其应

25、用. 北京:高等教育出版社. 20052 吴建国. 数学建模案例精编. 北京:中国水利水电出版社. 20053 姜启源,谢金星.数学建模.北京:高等教育出版社.20034 沈恒范.概率论与数理统计教程.北京:高等教育出版社.19985 谭永基.数学模型.上海:复旦大学出版社.201117附件一:Matlab 进行插值拟合:y2=0.61 0.34 1.44 0.24 1.39 0.11 0.58 1.12 1.08 0.56 0.84 0.72 y2 =0.61000.34001.44000.24001.39000.11000.58001.12001.08000.56000.84000.720

26、0 x2=1 2 3 4 5 6 7 8 9 10 11 12x2 =1 2 3 4 5 6 7 8 9 10 11 12 x3=1 2 3 4 5 6 7 8 9 10 11 12x3 =1 2 3 4 5 6 7 8 9 10 11 1218 x4=1 2 3 4 5 6 7 8 9 10 11 12x4 =1 2 3 4 5 6 7 8 9 10 11 12 y3=0.05 0.25 0.47 0.18 3.76 0.00 0.10 0.43 0.21 0.49 0.05 0.04 y3 =0.05000.25000.47000.18003.760000.10000.43000.21000.49000.05000.0400 y4=0.05 1.48 1.54 1.19 0.12 0.00 0.00 0.03 190.37 0.19 0.19 0.15 y4 =0.05001.48001.54001.19000.1200000.03000.37000.19000.19000.1500

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报