收藏 分享(赏)

高聚物的相及相转变中的亚稳态现象.doc

上传人:j35w19 文档编号:6959429 上传时间:2019-04-28 格式:DOC 页数:23 大小:215KB
下载 相关 举报
高聚物的相及相转变中的亚稳态现象.doc_第1页
第1页 / 共23页
高聚物的相及相转变中的亚稳态现象.doc_第2页
第2页 / 共23页
高聚物的相及相转变中的亚稳态现象.doc_第3页
第3页 / 共23页
高聚物的相及相转变中的亚稳态现象.doc_第4页
第4页 / 共23页
高聚物的相及相转变中的亚稳态现象.doc_第5页
第5页 / 共23页
点击查看更多>>
资源描述

1、50第三章 高聚物的相及相转变中的亚稳态现象( The condensed phase and the sub-stable phasein phase transition of polymers )3-1 引言物质在自然界中存在的相态和相态间的转变是凝聚态物理的核心研究内容,由于发生相转变时材料的性质发生显著变化,因此在材料科学领域研究物质相态和相态间的转变规律具有突出的重要性。对高分子材料而言,相变显得更加复杂,更加丰富多彩。绪论中已指出,高分子材料比人们常见的物质具有更多的聚集状态,除通常的固态、液态外,还有玻璃态、半结晶态、液晶态、高弹态、粘流态及形形色色的共混-共聚态等。这些状态间

2、的变化规律各不相同。与小分子相比,大分子链有其尺寸、形状及运动形式上的特殊性。大分子链尺寸巨大,分子链形状具有显著各向异性特征,分子运动时间长,松弛慢,松弛运动形式多样化,松弛时间谱宽广。这些特征决定了高分子材料的相转变要比小分子材料“慢”得多。从宏观上,我们可以运用热力学原理说明相变过程始态和终态的关系,但是相转变过程的快慢却决定于微观分子运动的速度,即主要由动力学因素所决定。大分子整链的“慢”运动特征决定了高分子材料的最终热力学稳定态往往是很难达到的,许多高分子材料的相变过程中存在着各种类型的亚稳定态。由于达到亚稳定态的时间相对来说要“快”得多,又由于亚稳定态也具有相当的稳定性,因此亚稳态

3、成为高分子材料相变过程中一种普遍存在,并能观察到的有趣的物理现象。半个世纪以来对高分子相变的研究往往只停留在静止态,即只观察其始态和终态,而作为一个动态过程,即对一步一步从无序态(始态)到亚稳态再到有序态(终态)的发展过程却很少了解。因此,了解亚稳态的存在、演变和终结是真正全面认识高分子相变的基础,不仅在高分子凝聚态物理领域开辟了新的学科分支,而且对高分子材料的发展和应用有重要指导作用。对亚稳态的认识实际上始于 19 世纪。1873 年,van der Walls 发现了气-液相变中的亚稳态;1897 年 Ostwald 提出“态定律”,即相变是一步一步从无序态向有序态的发展,第一次描述了中间

4、态的概念。然而在高分子科学中,把亚稳态的概念与相变联系起来是近几年的事情,是程正迪和 Keller 等人联合提出来的新概念。本章的目的是运用经典亚稳态和亚稳性的概念和原理,解释聚合物相变中所观察到的亚稳现象。 与小分子相比,高分子往往更容易形成亚稳区。复杂的组成、小的相51区尺寸和外场作用等因素是引起具有不同层次微结构的高分子材料形成亚稳相的主要原因。实验观测到的亚稳态包括聚合物相变中的过渡相、结晶和液晶聚合物的多晶型、晶体和液晶缺陷以及薄膜中的表面诱导有序化、自组装体系的超分子结构、聚合物共混物和共聚物中的微区结构和出现在加工过程中的外场诱导的相亚稳性等。3-2 相及相转变3-2-1 相的描

5、述凝聚态物理中如何定义“相”是一个极为重要的问题。从微观角度(分子运动论)上,通常可以通过结构对称性(如分子和原子的空间位置)以及它们的运动和相互作用来描述一个相。所谓空间结构对称性,从数学上讲,是指物体在空间运动(变换操作)时其对称群(对称操作)的高低。数学上定义,一组能够任意地平动、旋转和反演的操作(空间群)被定义为欧几里德群。如果一个物体在经历各种空间变换操作后仍保持不变,它的对称群即为欧几里德群,它具有很高的对称度,很低的空间有序性。流体(液体和气体)的特点就是如此,流体在经历所有上述空间变换操作后都不发生变化(即无变度),因而流体的对称群为欧几里德群。换句话说,流体具有的对称操作最多

6、,它的对称性在所有的相态中也最高,而它的有序性最低。或者说流体只具有短范围有序,而非长范围有序,人们不能靠对称性来区分液体和气体,而只能通过连续改变体系的热力学函数,在经过临界点时实现从液相到气相的变化。对于其他的相态(固态),由于内部有序结构的存在会引起空间对称性的下降,比如结构中存在某些特定位置和旋转的长程有序,使对称性的操作度减少。它们仅在某些欧几里德子群下对称群是不变的,与流体相比,它们具有较低的对称性和较高的有序性。例如结晶的固体,仅对某些独立的晶格平动和点群操作而言平均结构是不变的;对于介晶相,则引入某些位置和旋转长范围有序以定义一类材料,其有序和对称性介于均相的各相同性液体和结晶

7、的固体之间。近年来,de Gennes 提出一种新的物质凝聚态 -“软有序”态,或称软物质。de Gennes 指出,自然界中除了存在着两种极端的物质有序形式(凝聚态)外(一种是在任意的自由旋转和平移下无变度的,具有均一结构的各向同性液体;另一种是只在依照某种特定的抽象点阵平移和点群操作下才具有无变度特性的晶体),还存在一大类“软有序”态的物质。这类物质就空间对称性和有序度而言居于其中,处在上述两种极端形式之间。换句话说软物质既非液体,又非固体,“软有序”态是处于液态和固态之间的一种新的物质凝聚态形式。52描写处于一定凝聚态形式的物质的状态有特定的方法。传统上,一个体系的微观描述与其结构对称性

8、相关,如原子或分子在三维空间的位置,同时与其组分的运动和相互作用有关。描述少数粒子运动规律和相互作用的科学称为力学(包括经典力学和量子力学等),它适用于描述微观现象,通过求解一系列微分方程来实现。然而对于包含大量粒子的体系(如一升水含有 1027 个分子),对于描述宏观大体系(相态)的状态,经典力学方法得不到解析结果。而另一套行之有效的描述宏观现象的方法是使用温度(T )、压力(p)、体积(V)、能量(E )和熵(S)等宏观变量,以及物质参数,如比热容、压缩率和磁化率等,这种方法称热力学方法。热力学以几个经验定律为基础(如经典的热力学三定律:能量守恒定律、熵定律、热不能从低温物体传给高温物体)

9、,通过测量、计算、比较物质在不同状态的热力学参数(如温度、压力、内能、焓、熵等)来区分、描写不同的物质状态,了解物质运动的规律。热力学对体系宏观性质的描写和力学对体系微观运动的描写实际上是相辅相成的,热力学所描述的体系的宏观性质实际是微观的大量原子和分子运动性质的平均结果。连接宏观相态性质与微观结构运动的桥梁则是统计力学,主要方法为平均场方法。从结构的观点,相可由实验测得的描述原子或分子的平均相对位置的结构函数来确定,通常用数字密度算符概念来描述。这一概念规定,三维空间中在 r(X , Y, Z)处每单位体积的原子或分子数目为 n(r),那么在 r 处,密度算符的总平均是平均密度n(r )。对

10、于均相的各向同性流体,其平均密度是粒子总数与体系的相应体积之比。因此,在这些体系中n(r)与 r 的大小和方向无关,即无论是旋转还是平动流体都是不变的。在介晶相和结晶固体中,这种高度对称性不复存在。例如,在完整的结晶固体中,数字密度算符是周期性的,其原子或分子密度仅相对于平动晶格矢量是不变的。原子或分子密度相关函数的傅里叶变换被定义为结构函数,它描述在 r1 和 r2 处两点密度算符间的关系。密度相关函数是不同空间位置的密度算符乘积的总平均。这些函数可用散射实验方法测量。仅当相关函数不依赖于三维空间的位置差别时,如均相的流体,相关函数可从结构函数重构。因周期性的固体不能满足这一条件,故相关函数

11、需靠衍射方法获得。微观经典力学描述 统计力学,平均场方法 宏观热力学描述533-2-2 相变的定义1933 年,Ehrenfest 第一次提出了以热力学为基础的相变的分类。这一宏观分类是基于热力学中热能函数及其微商的连续性。就热力学函数而论,已知吉布斯自由能(G)和内能(E)都是热力学函数,它们一阶导数为压力 p(或体积 V)、熵 S(或温度 T)和极化率,其二阶导数为压缩系数、膨胀系数、比热容和摩尔极化率等。按Ehrenfest 分类,一级相转变定义为吉布斯自由能具有连续性,而其一阶导数不具有连续性的转变,即在转变温度下,除自由能外,所有的热力学函数在恒定的 p 或 V 下呈现不连续的突变。

12、广而言之,一个 K 级相转变可定义为所有的(K-1)阶导数具有连续性,而第 K阶导数不具有连续性的转变。实际上,除了理论上预测的少数几个例子外,我们只观察到一级和二级相转变。因而此种分类方法意义不大。为简便起见可以把一级相变称为不连续相变,二级相变或更高级相变综合称为连续相转变或临界现象。实验上观测到的一级转变有结晶和熔融,以及绝大多数液晶转变;二级转变有液-气间相转变的临界点,无外磁场作用的超流体和超导转变,和几种铁磁相转变(如 Curie 点);而高于二级的转变,在多组分混合物几个特殊的二维体系中被发现。对一级相变而言,其转变总对应于两个相的热能函数的交点。对高级相变而言,在一定压力下临界

13、现象具有临界温度和临界体积。在临界点附近,实验可以观察到许多有趣现象。当物质呈现从一相到另一相的转变时,在转变点物质的有序度和相应的对称性发生变化。一般说来,高温相通常具有相对低的有序度和相对高的对称性,而低温相则恰恰相反。在平均场理论中,有序度参数()被用于描述相变中的这些变化。在高温下,有序度参数 可被定义为零;降温时,达到转变温度开始呈现有序;而低于转变温度, 不再为零;若 由零连续增加,则为二级转变;若恰在转变温度之下 不连续突变到非零值,则该转变为一级转变。从宏观的观点,在一定的 T、p 和组成(假如可得)下,一个相变是否能发生是由热力学决定的。相图则描绘了对相行为的全面理解。相图是

14、指三维空间特定的横截面,如 T-p 面。相图由点、线、面等几个元素构成,其中面代表组成。人们最感兴趣的是线,因为线描绘了相和亚稳行为热力学函数的不连续变化。孤立的点也有意义,特别是临界点。通过临界点的相变不包括 V 和 H 变化。在临界处尚未发现两个相与亚稳态共存,而等温压缩率和其他物理参数可能是非周期变化的。尽管热力学从宏观上揭示了相变过程的起始和终结,但微观分子运动却决定了这个过程的快慢(引入时间尺度),这是动力学问题,动力学与热力学具有等同的重要性。实验上可以观测宏观的结构54或性能参数随时间的变化,同时将它们与相变动力学相关联。然而,仍需要微观分子模型以解释宏观实验数据和每一动力学过程

15、的特征。例如在结晶方面,成核和连续的晶体生长是对分子如何结晶成有序态的两种不同的描述。 高分子由于其长链特征,分子运动时间和尺度与小分子相比,有很大差别,因此聚合物的相变变得更加复杂,更加丰富多彩。固体聚合物由于难于达到热力学平衡,因而动力学在高分子体系的研究中显得特别重要。为便于理解,可将聚合物的相变分为两类,一类是大分子呈聚集状态,另一类是大分子呈孤立状态。大分子呈聚集状态的转变包括结晶和熔融(一级),液晶/塑晶转变(一级或二级),玻璃化转变(类似二级转变),溶胶-凝胶转变(一级),两组分体系的液- 液分离(一级,在临界点为二级),固-固转变(一级),以及嵌段共聚物、渗透膜、肥皂、胶束和气

16、泡(一级或二级)等。至于大分子呈孤立状态的转变,基本方法是运用统计力学找到孤立链分子的配分函数,然后求得其平衡热力学性能。在某些限定条件下,基于 G 的导数的不连续性找出相转变,故这些转变也属于 Ehrenfest 型转变,如双股脱氧核糖核酸的螺旋-无规线团转变(二级),单股多肽的螺旋-无规线团转变(弥散级转变),高分子穿过渗透膜(一级),高分子的表面吸着(二级),以及塌陷转变(二级或一级,依赖于溶剂)等。3-3 亚稳定性和亚稳态3-3-1 相平衡和稳定性平衡和稳定性是两个重要的但完全不同的热力学概念。为描述这两个概念的差别,我们可用经典力学作类比:平衡态意味着一个体系全部作用力的总和等于零,

17、而稳定性是指对外来扰动的调控能力。当一个体系能减低外来扰动时,该体系是稳定的;相反,则是不稳定的。如图 3-1 所示,体系(a)是不稳定平衡,体系( b)是稳定平衡,而体系(c)则是随遇平衡。上述概念也可应用到热力学方面。与图 3-1 类似,假如用 G 和 作图,热力学平衡的相要求 (极值点)。而对于稳定的相,还要求 (极小值点)0/dG 0/2d。破坏这一判断标准的点出现在 处(拐点),这指出了热力学稳定性限0/2dG界。为使稳定性等于该稳定性限界,要求 和 ,这是稳定性判/3/4断标准的必要和充分条件。因此,相稳定性判断标准可概述为:体系的最低阶非零偶数次导数为正值,而全部较低阶导数等于零

18、。3-3-2 经典亚稳态概念在热力学上,亚稳定性是指在一定的温度和压力下,物质的某个相尽管在热力学上55不如另一个相稳定,但在某种特定的条件下这个相也可以稳定存在。这种稳定性称亚稳定性,该状态称亚稳态(图 3-2)。亚稳态概念无论在学术上还是在材料实际应用上都很重要。按照上面的定义,单一组分的体系,当处于亚稳态时,与最终平衡态相比,其吉布斯自由能 G 并非处于最低点,即热力学上具有较不稳定性,但该状态仍能较长时间存在,对极小的波动而言,该相态是相对稳定的(图 3-3)。Ostwald 提出的态定律也指出物质从一种稳态向另一稳态的转变过程将经由亚稳态(只要它存在),即经由稳定性逐渐增加的阶段。然

19、而这一定律并未解决为何产生这种倾向,仅认为这是物质的固有性质。图 3-3 中,以 G 对 作图,对于亚稳态,也有 ,而 ,这类0/dG0/2d似于最终平衡态。可见,G ()是判断体系稳定性和亚稳性,以及描述相和相转变行为的基本函数。有许多方法可以得到 G(),如平均场理论、场论和重整化群等,其详细的描述见凝聚态物理教科书。原则上讲,亚稳态迟早要转化成最终平衡态,问题是这一弛豫过程将持续多长时间,这是典型动力学问题。换言之,亚稳态的存在决定于其寿命()必须大于实验观测的时间尺度(obs),而分子的弛豫时间( rel )要比亚稳态寿命短得多,满足 obsrel。另外亚稳态向平衡态的弛豫还必须克服能

20、垒 G (图 3-3)。关于亚稳态的经典实例是气相的凝聚或液相的汽化。图 3-4 解释了液-气间的相转变,在临界 T 和 p 以下,双结点曲线( binodal)代表热力学稳定性限界,而旋节点曲线(spinodal)则是亚稳性限界。在 binodal 和 spinodal 线之间可能存在过热的液相或过冷的气相,它们是亚稳定的。早在 1873 年,van der Waals 在其著名方程中第一次描述了这一现象。亚稳态的另一现象发生在晶体-液体转变的一级转变温度 T 附近。在这种情况下,高于转变温度 T 可能存在过热的晶相,而低于转变温度 T 可能存在过冷的液相,这一点由 G-T 图(图 3-5)

21、清楚可见,过热的晶体和过冷的液体都是亚稳态。但是这种行为不同于上述的液- 气转变。在大多数情况下,亚稳定态之间的相转变是一级转变,其转变行为是多姿多彩的。亚稳定态的形成受动力学因素控制十分显著。虽然绝对的亚稳性限界由热力学条件决定,然而在许多相变中,动力学条件往往是亚稳性限界的实际决定因素。Ostwald 态定律虽然指出相转变过程中有亚稳态存在,但该定律不能说明亚稳态存在的微观机制。人们要问,原子或分子为何能落入局部 G 极小值(非总体极小值)的区域?基于动力学的解释是因为达到这种亚稳态的速率较快。按照统计热力学,原子或分子首先(有较大的概率)选择 G 能垒较低的路径跃迁,而不考虑克服能垒后的

22、热力学稳定性。换56句话说,这些原子或分子是“瞎子”,他们不可能“看”到 G 能垒后面的热力学结局,假若大多数原子或分子处于局部极小值区域,则形成宏观的亚稳态。在相转变过程中,尽管亚稳定态在热力学上不是最稳定的,但由于动力学途径很快的缘故(较低的 G 能垒),而导致亚稳定态首先达到并稳定存在。3-3-3 环境亚稳态概念讨论经典亚稳态时,我们对态的尺寸没加限制,可以认为这些态的尺寸是无限大的。而在聚合物中广泛存在另一类亚稳态,其亚稳性由微观相尺寸决定(通常三维尺寸中至少有一维小于 1m)。实验上所观测的绝大多数聚合物形态落入这一范畴。这一类亚稳态,我们称之为形态亚稳态。确切地说,它是环境亚稳态的

23、一种类型,这类相态的形成与形成时的环境因素有关。导致这类亚稳性的原因很多,如可得物料的耗尽、几何上的限制(薄膜或空穴)、分子活动性(玻璃化)和相形成动力学(聚合物片晶)等。使用“环境”这个术语是通过不同的相态形成机理来分类亚稳性。环境亚稳态和经典亚稳态的共同特点是,热力学上二者都处于局部自由能最低,并且都移向绝对稳定性。聚合物存在丰富多彩的经典和环境亚稳态,并且在多数情况下,这两种亚稳态可能互相结合造成复杂的实验现象。例如,聚合物溶液或共混物产生液-液相分离时,体系并未发展到最终的稳态(如相分离的水和油混合物不同),而是形成了许多微观相形态。这些相形态的形成机理是由成核或 spinodal 分

24、解决定的。假若相分离的聚合物共混物总能很快的达到其最终稳态,像相分离的水和油混合物那样,这些亚稳相形态将消失,那么这一研究领域就不会像现在这样引起高度重视和兴趣。在相分离后,若一个组分是结晶的,则情况比较复杂,在液-液相分离产生的形态内可能又形成结晶形态。另一方面,如果玻璃化引进液-液相分离的体系,它可能阻止相分离,导致锁定相形态。液-液相分离或结晶过程中均会发生这种情况,微相和/ 或结晶形态可能被冻结。因此存在多层次多尺度的形态,而每个尺度都有其相应的亚稳性。就晶态而论,热塑性聚合物,即使是化学上完全均一的均聚物,也从不是完全结晶的。实际上这些材料的结晶度总是小于 100%,故称之为半晶材料

25、。妨碍聚合物完全结晶的原因是大分子的长链特征和动力学因素。这些半晶聚合物的非晶态变化范围很大,由局部的完全非晶区到晶体的表面区,同时存在一些中间状态,如应变非晶态和刚性非晶态等。上述几例说明我们尚缺乏统一的定义来定量的阐述这些亚稳态。然而,具有明显57和确定结构特征的折叠链片晶却为我们提供了确切解释形态亚稳态概念的范例。它不仅对结晶聚合物有特殊重要性,而且对物质相行为的普适化也是必须的。形态亚稳态概念基于这样的事实:柔性链聚合物的基本晶体结构是含有折叠链构象的片晶,片晶的厚度(l)等于(或相关于)折叠长度,通常在 10-50nm 范围。晶体的熔融温度常用于表示片晶的热力学稳定性。小的片晶厚度降

26、低了晶体的稳定性,从而降低了熔融温度(或溶液结晶的溶解温度),因此,从这种意义上说,聚合物晶体是形态亚稳性的。晶体的熔融温度与晶体尺寸(l)的关系可定量的由 Gibbs-Thomson 方程表示,对聚合物片晶而言则为 Hoffman-Weeks 表达式:(3-1))21(0HlTem式中, l 为晶体厚度;T m 和 Tm0 分别为晶体的熔点和平衡熔点( l 时); H 是晶体熔融热; e 是片晶底面或折叠面的表面自由能。包含横向侧表面能的方程很容易导出,但横向侧表面对晶体稳定性的影响通常可忽略。对于半晶聚合物,方程(3-1)具有普适性。方程(3-1 )中,片晶厚度 l 与 T( T=Tm0-

27、Tm)有着对应的关系,即 T 越大(结晶温度越低),l 越小,其原因来自于动力学。根据经典的成核理论,在某一特定的 T,只利于形成一种片晶厚度,即所谓的动力学最佳厚度。这是因为在每一 T,只存在一个最低成核能垒(位于 G 双曲线抛物面的底部),从而限定了一种动力学最佳核尺寸。通常,高分子一级成核之后,沿片晶厚度方向的生长可以忽略。因此,每一厚度可认为是形态多晶型或一种特殊的亚稳结构,或称形态亚稳性。所以片晶厚度引起的形态亚稳性可看作是多层次环境亚稳性的初级情况。3-3-4 两类亚稳态间的关系研究高分子材料时,常遇到经典和环境亚稳态相互结合的情况,如许多结晶聚合物可能存在多晶型,具有不同的晶格对

28、称性。聚乙烯是典型的一例,呈现正交、三斜和六方晶体结构。如前所述,在特定的温度和压力下,除一种稳态晶型外,其余晶性都应是亚稳态,同时每一晶型在不同的 T 还将呈现不同的厚度(由于动力学原因),结果造成了特殊的多层次亚稳性。一类是经典亚稳态,与晶格结构相关;另一类与有限的晶体厚度相关,称作形态亚稳态。建立这两类亚稳态间的关系可导出重要的结论。基于方程(3-1),每一晶型有其自己的尺寸依赖性,同时由于 e 和 H 参数值不同,每一晶型的尺寸依赖性亦不同。应指出,T m 与 1/ l 呈线性关系(见图 3-6),沿温度坐标轴的截距为 Tm0,斜率为58。如果存在两种晶型,一种稳定,而另一种亚稳定,同

29、时鉴于(T m0)Hem/0meta(T m0) st 的事实,T m 1/ l 直线可以相交,其条件是( e/ H) meta( e/ H)st(这一条件常被满足)。这意味着随着晶体尺寸的变小,存在一临界尺寸,超越该临界尺寸后,(T m) meta(T m) st,出现稳定性随晶体尺寸减小而颠倒的现象。即当相尺寸足够小时,经典的亚稳态可以成为稳态;相反,常规的稳态却变成亚稳态(图 3-6)。这一点在基本概念上很重要,而在此之前并未被认识。这种稳定性随尺寸反演的可能性对聚合物结晶具有重要意义。当进一步考虑这些晶型的形成动力学时,显然临界核是实现晶体生长的最小尺寸,而较低的 G 能垒导致较快的生

30、长速率。假如相稳定性随尺寸减小发生反演,则亚稳相(在足够小的临界核尺寸变得较稳定)可能生长较快。因此,一个相以其亚稳性择优发展并非因为某种固有的亚稳性选择(这是 Ostwald 定律的含意),而是因为在一开始亚稳相由于其小的尺寸便是稳相,同时也正是因为尺寸小的原因,生长速率则成为决定性因素。需进一步探讨的问题是这个相在其整个生长过程中是否能保持其晶体结构不变,若情况确实如此,似乎是遵从 Ostwald 定律,否则,它可能转变成另一种晶体结构的最终稳定态,而失去起始过渡相的记忆。最后应指出,小的相尺寸也可能是外来约束的结果。尺寸减小,表面条件变化,甚至引入外场都可能引起相稳定性移动,从而导致表观

31、亚稳态(与未受限的常规宏观尺寸相比较而言)。“表观”一词意味着这个相在这种外来约束条件下实际上是稳定的,如同前述的纯尺寸诱导稳定性移动一样。一个重要的差别是这些约束条件通常可以热力学变量表示,因此可表示为真实的相图。在传统的材料科学中,这些约束可能是固体中小的裂纹、间隙或空穴,而对于聚合物体系,则可能是微相的界面。例如在嵌段共聚物中,由于局部液-液相分离,可能形成新的微相区,而在预先存在的受限的微相区内,各组分可能进一步发生相变,如结晶或形成中间相。3-4 高分子结晶中的亚稳态现象3-4-1 结晶高分子中的整数折叠链(IF)和非整数折叠链(NIF )高分子链如何结晶是一个最基本的,却难以回答的

32、问题。研究低分子量齐聚物的结晶行为,然后扩展到常规聚合物应是认识聚合物结晶的有效途径。20 世纪 70 年代,Kovacs 等人通过偏光显微镜(PLM )、相差显微镜(PCM )、透射电子显微镜(TEM)、示差扫描量热法( DSC)和小角 X 射线散射(SAXS)等实验手段研究了分子量在 2000-10000 间的低分子量聚氧乙烯(LMW PEO)的结晶行为,发现了整数折叠链的片晶。所谓整数折叠链(IF )就是说 PEO 片晶中折叠链分子59长度(片晶厚度)随温度以量子化方式增加(折叠次数 n=0,1,2,3,)。到 80 年代,Ungar 和 Keller 在研究正烷烃晶体的结构中既发现有整

33、数折叠链,还发现有非整数折叠链(NIF)的片晶。后来在 PEO 的片晶中也发现有非整数折叠链存在,这个结果是通过同步加速器进行小角 X 射线散射(SAXS )实验得到的。于是就提出一个问题:结晶时,链分子是彼此有组织地联合,结晶成 IF 构象;还是这些分子是“瞎子”,对其他链的结晶过程视而不见,直至其相邻链段结晶为止。从热力学角度看,非整数折叠链晶体(NIF )不如整数折叠链晶体(IF)稳定,与 IF 晶体相比,NIF 晶体属于亚稳定态。3-4-2 从非整数折叠链到整数折叠链的转变在研究 PEO 结晶过程中还发现,在很大的过冷范围内, PEO 分子链结晶首先形成NIF 晶体,然后转变成 IF

34、晶体。尽管 NIF 晶体热力学上不如 IF 晶体稳定,但在动力学上它却形成地更快。正烷烃的结晶规律经证实也是起始形成 NIF 晶体,而后在退火过程中通过增厚或减薄转变成 IF 晶体。图 3-7 所示为分子量 3000 的 PEO 级分在 43结晶时 NIF 晶体的形成过程。图中可见,在此结晶过程中,折叠长度为 13.6nm 的 NIF 晶体最早形成(t = 0.4 min),它的折叠长度在伸直链晶体 IF(n=0) (19.3nm)和一次折叠链晶体 IF(n=1)(10.0nm)之间。随着退火过程的进行,谱图逐渐演变成两个峰,分别对应着 n=0 和n=1 的两个整数折叠链( t = 34.3

35、min),NIF 晶体演变成 IF 晶体。图 3-8 中的实验结果表明 NIF 晶体的折叠长度与结晶温度有关,温度较低时 NIF晶体厚度较小,温度较高时 NIF 晶体厚度较大,这与其它聚合物结晶时观察到的折叠长度的变化相似。有趣的是在一定温度下,在从 NIF 到 IF 晶体的转变中,可以同时具有晶片变厚 NIFIF(n =0)晶体和减薄 NIFIF (n=1)晶体两个过程。图 3-9 给出这种晶体厚度演变的示意图。更重要的是,在整个结晶过程完成后相当长的时间内,这些过程仍在继续进行。在高分子结晶物理学中我们知道,热力学稳定性与晶片厚度成比例,这可以用Thomson- Gibbs 方程(或 Ho

36、ffman-Weeks 方程,公式 3-1)表述。因此经过退火,晶体可以转变为更稳定的形式,即晶片增厚这个过程在热力学上是合理的。可是对于减薄过程的理解还需进一步讨论。当考虑这些过程的热力学和形态学判据时,假定晶体的吉布斯自由能遵循G(NIF )G(IF,n=i+1)G(IF,n=i),并且其折叠长度 L(IF,n=i)L(NIF ) L(IF ,n=i+1),增厚和减薄过程都能发生(在 i=0 时,意味着零次整数折叠(n=0),即为伸直链晶体);60另一方面,假定 G(IF,n=i+1)G(NIF)G(IF,n=i),并且对应的折叠长度 L(IF ,n=i )L (NIF )L (IF,n=

37、i+1),这就象一般情况下的高分子结晶,减薄过程是不可能自动发生的。第一种情况下,NIF 晶体具有最高的吉布斯自由能,这是由于链末端造成晶体中有缺陷以及晶体折叠表面粗糙而造成的。这两个因素导致晶体稳定性降低,增加了体系的吉布斯自由能。于是,尽管 NIF 晶体的折叠长度比 IF(n=i+1)晶体的折叠长度还长,它仍是稳定性最低的晶体。此外,与形成 IF 晶体比较,形成 NIF 晶体的能垒是最低的,于是绝大多数处于平均波动幅度的齐聚物分子更容易通过 NIF 晶体能垒,首先形成NIF 亚稳态晶体。在折叠次数超过 1 的情况下,实验中也发现存在 NIF 晶体。影响 NIFIF 转变的结构因素对于 LM

38、W PEO 级分的齐聚物,NIF 亚稳态晶体的寿命很短,如分子量为 3000 的PEO 晶体,在 43仅存在几分钟。能否延长其寿命以便深入研究 NIFIF 的转变过程?假如这一转变是沿晶体 c 轴的分子滑移扩散过程,则其转变动力学应与端基尺寸有关。从结构看,低分子量 PEO 级分具有OH 端基,在固体和熔体中都发现了氢键。有人推测在 IF 晶体的形成过程中氢键起了重要作用。实际上在低分子量 PEO 系列中引入其它末端基后,许多情况下还是观察到了 IF 晶体。研究表明,无论引入何种末端基,在低分子量 PEO 级分中都存在 NIF 晶体,并且随末端基团的体积增大(从 OCH3、 OC(CH 3)

39、3 到 OC6H5),NIF 晶体存在的时间越长。这意味着前面的判断是有道理的。即在结晶过程中和结晶结束后,链状分子有可能沿晶体 C 轴方向滑移。链末端基越大,在固体状态这种滑移受到的阻碍也越大,NIF 亚稳态晶体的寿命也越长。同样的道理也可判断,聚合物分子量对 NIFIF 的转变过程也有影响。研究结果表明,PEO 系列样品(分子量 3000-20000)的 NIF 晶体寿命随分子量增大而延长:随着分子量增加,初始的 NIF 晶体和最终的 IF 晶体之间转变的热力学驱动力降低了,同时分子运动的阻力(势垒)增加,阻碍了 NIFIF 晶体的转变。 当链长度足够大时,NIF晶体能永久性地保存下来。3

40、-4-3 多晶和单晶高分子中相的亚稳定性的确定许多聚合物晶体存在不同的多晶态。从热力学平衡角度考虑,在给定的温度和压力61下,多晶态中只有一种晶型是稳定的。在适当的退火条件下,由于分子运动能力增强,有助于固-固相转变发生,亚稳定的晶型可转变为更稳定的晶型。形成更稳定相的驱动力来自于该相有更低的吉布斯自由能。但是实际上,由于动力学的原因,在相同的条件下同时形成多种晶型,其中大量的为亚稳态晶型。而且由于聚合物的特殊结构和大分子的特殊运动形式,这些亚稳态晶型的寿命也相当长。另外当晶型发生转变时,中间也会经过亚稳态晶型。Ostwald 提出的中间态定律表述了相转变的顺序:从一个稳定态到另一个稳定态的相

41、转变可通过一系列可能存在的中间态之间的逐步转变而实现。众多聚合物中,如高压聚乙烯、全同聚丙烯、间同聚丙烯(s-PP)、反-1,4-聚丁二烯中,人们都观察到聚合物多晶现象。表 3-1 几种聚合物的多晶晶型聚 合 物 晶 型高压聚乙烯全同聚丙烯间同聚丙烯反-1,4-聚丁二烯正交、三斜、六方单斜 、三斜 、六方 高温正交、低温正交、三斜单斜、六方下面以高性能工程塑料聚醚酮酮(PEKK)为例研究其多晶形态。对位聚醚酮酮 PEKK(T)的化学结构式如下:O O ( O C C ) n研究表明,PEKK(T)有两种不同的晶型。晶型 I 为稳态晶体,其结构已确定为双链 C中心正交晶格,晶胞参数为 a=0.7

42、69nm,b=0.606nm,c=1.008nm(图 3-10(a)。而晶型 II 只有在较低的温度下才是稳定的,属于亚稳态晶体,对其结构的对称性和晶胞尺寸一直存有争论。有两种结果:一种认为是单链正交晶胞(图 3-10(c),另一种认为是双链正交晶胞(图 3-10(b)。两种晶胞应该有完全不同的电子衍射(ED)图,见图 3-11。实验的难点在于很难从熔体中生长出足够大的半刚性 PEKK(T)单晶,因此一直难有定论。最近程正迪从熔体中得到了 PEKK(T)的两种单晶:晶型 I 和晶型 II。从电子衍射(ED )图可以清楚看出,晶型 I 和晶型 II 都具有双链正交晶胞的结晶结构(图 3-12)。

43、虽然两种晶型有相同的空间群,但其不同的堆砌导致了不同的稳定性。从热力62学看,晶型 I 比晶型 II 稳定,因为晶型 I 的生成温度较高(过冷度较小),需要较高的分子活动性,并具有相对较大的临界核尺寸;而晶型 II 在较低温度生成(过冷度较大),仅需要有限的分子活动性,临界核尺寸相对较小。目前在实验中尚未观察到晶型 II 向晶型 I 的固态转变,晶型 II 是一种典型的经典亚稳态例子。有关不同晶型亚稳性的另一实例是主链含侧基的聚芳醚酮共聚物。该共聚物呈现与常规聚芳醚酮类似的结晶行为,不同之处在于,由于主链上同时存在干扰结晶的单元和介晶单元,故有具有热致液晶性。即在结晶的转变温度之上呈现高有序近

44、晶相或近晶结晶相,而这种高有序液晶性反过来又对其结晶行为产生重大影响。另外大量的实验事实证实:在一个封闭体系中,假如相是一个非均匀分散体系,较大颗粒的生长是靠消耗较小颗粒为代价而实现的。3-5 高分子液晶的亚稳定性双向性和单向性液晶相转变行为液晶相转变行为可分为双向性和单向性转变行为两类。从现象学上分,双向性转变行为表示在冷却和加热两种过程中均可观察到液晶相;单向性转变行为表示在(快速)冷却过程中能观察到液晶相,而在加热过程中只能观察到一种从晶相到液相稳定的相变(熔融)。对于同时含有结晶和液晶相的聚合物体系,在晶体熔融温度 Tm 和各向同性转变温度 Ti(由含晶相到无晶相的转变)之间,双向转变

45、的液晶相在热力学上是稳定的,而单向转变的液晶相在这个温度区间是亚稳定的。由于结晶的成核过程受动力学控制,当从各向同性的熔体中(冷却)结晶时(这个过程受制于动力学控制的成核过程),需要一个过冷度,这会造成结晶相延迟出现。于是在较快的降温结晶过程中,单向性液晶可能首先从实验中观察到。从热力学,通过不同相的吉布斯自由能对温度作图很容易理解单、双向性液晶的相转变行为。见图 3-13(a ),在 Td(晶相和液晶相的转变温度)到 Ti 之间的温度区间内,无论是升温过程或降温过程,双向性液晶态在热力学上都是稳定的(其吉布斯自由能最低)。升温时,体系由晶相液晶相液相;降温时,体系由液相液晶相晶相。即在降温和

46、升温过程中都能观察到液晶生成。对比图 3-13(b),对单向性液晶而言,液晶相的吉布斯自由能始终高于晶相的自由能。在升温过程中,晶相无须通过液晶相直接转变为液相。在降温过程中,若降温速度很快,在结晶过程由于成核速度较慢而被抑制的情况下,有可能先出现液晶相,最后再转变为晶相。动力学因素在此起到了重要作用。因此单向性液晶的相转变只能在降温过程中才能观察到。单向转变63的相在整个温度区间都是亚稳定的。另外指出,单向相转变是定义很广的相行为,不仅用于液晶相,也可发生在其他软有序相甚至结晶相之间。确定一个单向性液晶相需要周密的实验证据,为了确定相转变的本质是一个平衡过程还是动力学控制过程,需要进行不同降

47、温速率的 DSC 实验。单向相行为的发生和介晶基团的刚性、线性、对称性和长径比的降低有关,这些因素导致液晶相稳定性的降低,因而相的熵值发生变化,导致转变温度降低。对单向性液晶的研究有助于研究熔体和液晶态下的结晶动力学。这儿必需考虑三个相转变速率:从各向同性熔体中液晶形成的速率、结晶的速率,以及从液晶态中的结晶速率。对应于这些相转变速率可确定三个动力学区域(如图 3-14):区域 I(T m,metaTT m,st ,高温区)直接从各向同性熔体中结晶(只有稳态相转变速度);区域 III(T T *,低温区液晶相先形成然后从液晶相结晶, (此时亚稳相液晶形成的速率比结晶速率快得多);区域 II(T

48、 *TT m,meta )此时结晶速率与液晶相形成速率具有相同数量级,两种相转变行为展开竞争。在区域 I 中,从各向同性熔体中结晶是一个受成核作用控制的过程;在区域 III 中,从各向同性熔体向液晶的转变速率极快,难以在实验中测定。尽管如此,对聚合物而言,在转变温度下,相转变肯定是热力学一级转变(熵变和焓变均显示出不连续性),而且在某种情况下,由于液晶形成动力学的减慢而使实际观察成为可能。在图 3-14 中还可比较从各向同性熔体中直接结晶形成速率和从液晶相结晶形成速率。假定从液晶相中形成的晶体结构与直接从熔体中结晶形成的晶体结构相同(在许多情况下两者并不相同),那么在区域 III 中,从液晶态

49、到晶态的相转变可以看作相当于从各向同性熔体直接结晶过程中两步相变的一步。这两步包括从各向同性熔体到液晶态的相转变,和随后从液晶态到晶态的相转变。而液晶态可以认为是结晶过程中的亚稳态,这种亚稳态的液晶多是单向性液晶。图中可以看出,从液晶态到晶态的结晶速率应当比熔体里直接结晶的速率快。图 3-15 给出液晶性聚酯酰亚胺PEIM(n=11 )(由 N-4-(氯甲酰基)苯基-4-(氯甲酰基)邻苯二甲酰亚胺和含 4-12 个亚甲基单元的二醇合成得到)在整个结晶温度范围内的结晶速率,可以看出在区域 III 中的结晶速率最大。实验表明在区域 III 中PEIM 具有一个低有序近晶液晶相 SA(属于亚稳态)的转变温度,这种先形成的有序64相 SA 加快了结晶速率。图 3-14 的区域 II 中,由于从各向同性熔体直接结晶的速率与液晶相的形成速率数量级相同,因而这一区域特别值得讨论。最简单的情形是分子有两种选择,或者是分子直接进入晶相,或者是首先形成液晶相,然后结晶形成晶相。这两种

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报