收藏 分享(赏)

周期信号的频谱的特点.doc

上传人:hskm5268 文档编号:6934145 上传时间:2019-04-27 格式:DOC 页数:10 大小:123.50KB
下载 相关 举报
周期信号的频谱的特点.doc_第1页
第1页 / 共10页
周期信号的频谱的特点.doc_第2页
第2页 / 共10页
周期信号的频谱的特点.doc_第3页
第3页 / 共10页
周期信号的频谱的特点.doc_第4页
第4页 / 共10页
周期信号的频谱的特点.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、周期信号的频谱的特点一、 周期信号的频谱一个周期信号 )(tf,只要满足狄里赫利条件,则可分解为一系列谐波分量之和。其各次谐波分量可以是正弦函数或余弦函数,也可以是指数函数。不同的周期信号,其展开式组成情况也不尽相同。在实际工作中,为了表征不同信号的谐波组成情况,时常画出周期信号各次谐波的分布图形,这种图形称为信号的频谱,它是信号频域表示的一种方式。描述各次谐波振幅与频率关系的图形称为振幅频谱,描述各次谐波相位与频率关系的图形称为相位频谱。根据周期信号展成傅里叶级数的不同形式又分为单边频谱和双边频谱。1 单边频谱若周期信号 )(tf的傅里叶级数展开式为式(3-15),即 10 )cos()(

2、n nn tnAAtf (3-24)则对应的振幅频谱 n和相位频谱 称为单边频谱。例 3-3 求图 3-4 所示周期矩形信号 )(tf的单边频谱图。解 由 )(tf波形可知, )(tf为偶函数,其傅里叶系数 2/01)(4Tdtfa2/0 )4/sin(cos)(Tnttfnb故 110 cos)4/sin(24cos2)(n ttatf 因此 40A, nAn)4/si(2即 5.01, 32.0, 15.03A,4A, 9.5A, 6.6 单边振幅频谱如图 3-5 所示。tf(t) 3 -4 4 2/ 02/ 41 3 -50.250.450.320.150.90.16 7 6 4 2 0

3、An2 双边频谱若周期信号 )(tf的傅里叶级数展开式为式(3-17),即 25)-(3 )(ntjneFtf则 nF与 所描述的振幅频谱以及 的相位 nFarct与 所描述的相位频谱称为双边频谱。例 3-4 画出图 3-4 所示矩形周期信号 )(tf的双边频谱图形。解 由式(3-18)和图 3-4 可知2/ 4)/sin(21)(1TtjnndefF40, 25.1, 19.02F, 075.3F, 4., .6故 nF, narct的双边频谱图如图 3-6 所示。 3 -60.250.250.159.070.45 5 3 0 - 3- 5- nF 5 3 0 - 3- 5- nFarcta

4、从上例频谱图上可以看出,单边振幅频谱是指 nFA2与正 值的关系,双边振幅频谱是指 nF与正负 值的关系。应注意 n,所以将双边振幅频谱 n围绕纵轴将负 一边对折到 n一边,并将振幅相加,便得到单边振幅 A频谱。当 nF为实数,且 )(tf各谐波分量的相位为零或,图形比较简单时,也可将振幅频谱和相位频谱合在一幅图中。比如,例 3-4 中 )(tf的频谱可用 nF与n关系图形反映,如图 3-7 所示。0.25 3 0 - 3- 4- nF5 7 7 5 3 -73 周期信号频谱的特点图 3-7 反映了周期矩形信号 )(tf频谱的一些性质,实际上它也是所有周期信号频谱的普遍性质,这就是:(1) 离

5、散性。指频谱由频率离散而不连续的谱线组成,这种频谱称为离散频谱或线谱。(2) 谐波性。指各次谐波分量的频率都是基波频率 T2的整数倍,而且相邻谐波的频率间隔是均匀的,即谱线在频率轴上的位置是 的整数倍。(3) 收敛性。指谱线幅度随 n而衰减到零。因此这种频谱具有收敛性或衰减性.二、 周期信号的有效频谱宽度在周期信号的频谱分析中,周期矩形脉冲信号的频谱具有典型的意义,得到广泛的应用。下面以图 3-8 所示的周期矩形脉冲信号为例,进一步研究其频谱宽度与脉冲宽度之间的图 3-8 关系。 tf(t) 3 -8E TT 2/02/图 3-8 所示信号 )(tf的脉冲宽度为 ,脉冲幅度为 E,重复周期为

6、T,重复角频率为 T2。若将 )(tf展开为式(3-17)傅里叶级数,则由式(3-18)可得 2/2/ )2(1 nSTEEeTF atjnn (3-26)在这里 n为实数。因此一般把振幅频谱和相位频谱合画在一幅图中,如图 3-9所示。 3 0 - 3- 4- nF5 7 7 5 3 -9TE/由此图可以看出:(1) 周期矩形脉冲信号的频谱是离散的,两谱线间隔为 T2。(2) 直流分量、基波及各次谐波分量的大小正比于脉幅 E和脉宽 ,反比于周期 T,其变化受包络线 xsin的牵制。(3) 当 )2,1( 2m时,谱线的包络线过零点。因此 2m称为零分量频率。(4) 周期矩形脉冲信号包含无限多条

7、谱线,它可分解为无限多个频率分量,但其主要能量集中在第一个零分量频率之内。因此通常把 20这段频率范围称为矩形信号的有效频谱宽度或信号的占有频带,记作或 12fB (3-27) 显然,有效频谱宽度 只与脉冲宽度 有关,而且成反比关系。有效频谱宽度是研究信号与系统频率特性的重要内容,要使信号通过线性系统不失真,就要求系统本身所具有的频率特性必须与信号的频宽相适应。对于一般周期信号,同样也可得到离散频谱,也存在零分量频率和信号的占有频带。三、 周期信号频谱与周期 T的关系下面仍以图 3-8 所示的周期矩形信号为例进行分析。因为 )2(nSTEFan所以在脉冲宽度 保持不变的情况下,若增大周期 ,则

8、可以看出:(1) 离散谱线的间隔 T2将变小,即谱线变密。(2) 各谱线的幅度将变小,包络线变化缓慢,即振幅收敛速度变慢。(3) 由于 不变,故零分量频率位置不变,信号有效频谱宽度亦不变。图 3-10 给出了脉冲宽度 相同而周期 T不同的周期矩形脉冲信号的频谱。由图可见,这时频谱包络线的零点所在位置不变,而当周期 T增大时,频谱线变密,即在信号占有频带内谐波分量增多,同时振幅减小。当周期无限增大时, )(tf变为非周期信号,相邻谱线间隔趋近于零。相应振幅趋于无穷小量,从而周期信号的离散频谱过渡到非周期信号的连续频谱,这将在下一节中讨论。tf(t)E 0-T T8T 3 -10tf(t)E T-

9、T0-2T 2T2Ttf(t)E 0-T T4T/23 2 0 - 2- 3- nFTE/ /2wnFTE/2 /2 0 w2/E/2 /2 0 wnF如果保持周期矩形信号的周期 T不变,而改变脉冲宽度 ,则可知此时谱线间隔不变。若减小 ,则信号频谱中的第一个零分量频率 2增大,即信号的频谱宽度增大,同时出现零分量频率的次数减小,相邻两个零分量频率间所含的谐波分量增大。并且各次谐波的振幅减小,即振幅收敛速度变慢。若 增大,则反之。四、 周期信号的功率谱周期信号 )(tf的平均功率可定义为在 1电阻上消耗的平均功率,即2/)(TdtfP (3-28) 周期信号 )(tf的平均功率可以用式(3-2

10、8)在时域进行计算,也可以在频域进行计算。若 的指数型傅里叶级数展开式为 ntjneFtf)(则将此式代入式(3-28),并利用 的有关性质,可得 22/)(1nTFdtfP (3-29) 该式称为帕塞瓦尔(Parseval)定理。它表明周期信号的平均功率完全可以在频域用 nF加以确定。实际上它反映周期信号在时域的平均功率等于频域中的直流功率分量和各次谐波平均功率分量之和。2nF与 的关系称为周期信号的功率频谱,简称为功率谱。显然,周期信号的功率谱也是离散谱。例 3-5 试求图 3-8 所示周期矩形脉冲信号 )(tf在有效频谱宽度内,谐波分量所具有的平均功率占整个信号平均功率的百分比。设 201,4,1TE。解 因为 5/)sin(1)2(STEFan作出频谱和功率谱图,如图 3-11 所示。第一个零分量频率为 40 0所以在信号频谱宽度内,包含一个直流分量和四个谐波分量。nF5/148 4801616- 3232-2nF25/148 4801616- 3232-图 3-11周期信号的平均功率为 WdtfTP2.0)(12/在有效频谱宽度内信号的平均功率为 2243210 FFBWSSaaa 1806.)5()()5(5222 故 9.02.186PB从上式可以看出,在所给出的周期矩形脉冲情况下,包含在有效频谱宽度内的信号平均功率约占整个信号平均功率的 90%。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报