1、实际问题与一元二次方程(二),面积问题,有关面积问题:,常见的图形有下列几种:,例3、求截去的正方形的边长,用一块长28cm、宽 20cm的长方形纸片,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体盒子,使它的底面积为180cm,为了有效地利用材料,求截去的小正方形的边长是多少cm?,求截去的正方形的边长,分析 设截去的正方形的边长为xcm之后,关键在于列出底面(图中阴影部分)长和宽的代数式结合图示和原有长方形的长和宽,不难得出这一代数式,求截去的正方形边长,解:设截去的正方形的边长为xcm,根据题意,得,(28-2x)(20-2x)=180,x2-24x+95=0,解这个方程,得:
2、x1=5,x2=19,经检验:x219不合题意,舍去所以截去的正方形边长为cm.,例4:建造一个池底为正方形,深度为2.5m的长方体无盖蓄水池,建造池壁的单价是120元/m2,建造池底的单价是240元/m2,总造价是8640元,求池底的边长.,分析:池底的造价+池壁的造价=总造价,解:设池底的边长是xm.,根据题意得:,解方程得:,池底的边长不能为负数,取x=4,答:池底的边长是4m.,练习、建造成一个长方体形的水池,原计划水池深3米,水池周围为1400米,经过研讨,修改原方案,要把长与宽两边都增加原方案中的宽的2倍,于是新方案的水池容积为270万米3,求原来方案的水池的长与宽各是多少米?,原方案,新方案,3、小明把一张边长为10厘米的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子。如果要求长方体的底面面积为81平方厘米,那么剪去的正方形边长为多少?,列一元二次方程解应题,6、放铅笔的V形槽如图,每往上一层可以多 放一支铅笔现有190支铅笔,则要放几层 ?,解:要放x层,则每一层放(1+x) 支铅笔.得 x (1+x) =1902,通过这节课的学习: 我学会了 使我感触最深的是 我发现生活中 我还感到疑惑的是,