收藏 分享(赏)

数学f1初中数学3.3 圆周角和圆心角的关系教案一.doc

上传人:wspkg9802 文档编号:6862444 上传时间:2019-04-25 格式:DOC 页数:7 大小:92.50KB
下载 相关 举报
数学f1初中数学3.3 圆周角和圆心角的关系教案一.doc_第1页
第1页 / 共7页
数学f1初中数学3.3 圆周角和圆心角的关系教案一.doc_第2页
第2页 / 共7页
数学f1初中数学3.3 圆周角和圆心角的关系教案一.doc_第3页
第3页 / 共7页
数学f1初中数学3.3 圆周角和圆心角的关系教案一.doc_第4页
第4页 / 共7页
数学f1初中数学3.3 圆周角和圆心角的关系教案一.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、知识决定命运 百度提升自我本文为自本人珍藏 版权所有 仅供参考本文为自本人珍藏 版权所有 仅供参考圆周角和圆心角的关系教学目标(一)教学知识点1了解圆周角的概念2理解圆周角定理的证明(二)能力训练要求经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想(三)情感与价值观要求通过观察、猜想、验证推理,培养学生探索数学问题的能力和方法教学重点圆周角概念及圆周角定理教学难点认识圆周角定理需分三种情况证明的必要性教学方法指导探索法教具准备投影片两张第一张:射门游戏(记作331A)第二张:补充练习 1(记作331B)教学过程创设问题情境,引入新课师

2、前面我们学习了与圆有关的哪种角?它有什么特点?请同学们画一个圆心角生学习了圆心角,它的顶点在圆心师圆心是圆中一个特殊的点,当角的顶点在圆心时,就有圆心角这样角与圆两种不同的图形产生了联系,在圆中还有比较特殊的点吗?如果有,把这样的点作为角的顶点,会是怎样的图形?知识决定命运 百度提升自我讲授新课1圆周角的概念师同学们请观察下面的图(1) (出示投影片 33 1A)这是一个射门游戏,球员射中球门的难易与他所处的位置 B 对球门 AC 的张角( ABC)有关师图中的 ABC,顶点在什么位置?角的两边有什么特点?生ABC 的顶点 B 在圆上,它的两边分别和圆有另一个交点(通过学生观察,类比得到定义)

3、圆周角(angle in a circular segment)定义:顶点在圆上,并且角的两边和圆相交的角师请同学们考虑两个问题:(1)顶点在圆上的角是圆周角吗?(2)圆和角的两边都相交的角是圆周角吗?请同学们画图回答上述问题师通过画图,相互交流,讨论认清圆周角概念的本质特征,从而总结出圆周角的两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦2补充练习 1(出示投影片331B)判断下列图示中,各图形中的角是不是圆周角,并说明理由知识决定命运 百度提升自我答:由圆周角的两个特征知,只有 C 是圆周角,而 A、B、D 、E 都不是3研究圆周角和圆心角的关系师在图(1)中,当球员在

4、 B、D、E 处射门时,他所处的位置对球门 AC 分别形成三个张角ABC,ADC,AEC这三个角的大小有什么关系?我们知道,在同圆或等圆中,相等的弧所对的圆心角相等那么,在同圆或等圆中,相等的弧所对的圆周角有什么关系?师请同学们动手画出 O 中 所对的圆心角和圆周角观察 所对的圆周角有几个?它们的大小有什么关系?你是通过什么方法得到的? 所对的圆心角和所对的圆周角之间有什么关系?生 所对的圆周角有无数个通过测量的方法得知: 所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半师对于有限次的测量得到的结论,必须通过其论证,怎么证明呢?说说你的想法,并与同伴交流生互相讨论、交流,寻找解题途径师

5、生共析 能否考虑从特殊情况入手试一下圆周角 一边经过圆 特 殊心由下图可知,显然ABC AOC,结论成立12知识决定命运 百度提升自我(学生口述,教师板书)如上图,已知:O 中, 所对的圆周角是ABC,圆心角是AOC求证:ABC AOC12证明:AOC 是ABO 的外角,AOCABO BAOOA OB,ABO BAOAOC2ABO 即ABC AOC1师如果ABC 的两边都不经过圆心( 如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?( 学生互相交流、讨论)生甲如图(1),点 O 在ABC 内部时,只要作出直径 BD,将这个角转化为上述情

6、况的两个角的和即可证出由刚才的结论可知:ABD AOD,CBD COD,1212ABD CBD ( AODCOD ),即ABC AOC12知识决定命运 百度提升自我生乙在图(2)中,当点 O 在ABC 外部时,仍然是作出直径 BD,将这个角转化成上述情形的两个角的差即可由前面的结果,有ABD AOD,CBD COD1212ABD CBD ( AODCOD ),即ABC AOC12师还会有其他情况吗?请思考生不会有师经过刚才我们一起探讨,得到了什么结论?生一条弧所对的圆周角等于它所对的圆心角的一半师这一结论称为圆周角定理在上述经历探索圆周角和圆心角的关系的过程中,我们学到了什么方法?生由“特殊到

7、一般 ”的思想方法,转化的方法,分类讨论的方法,师好,同学们总结得很好由此我们可以知道,当解决一问题有困难时,可以首先考虑其特殊情形,然后再设法解决一般问题,这是解决问题时常用的策略今后我们在处理问题时,注意运用4课本 P103,随堂练习 1、2课时小结师到目前为止,我们学习到和圆有关系的角有几个?它们各有什么特点?相互之间有什么关系?生和圆有关系的角有圆心角和圆周角圆心角顶点在圆心,圆周角顶点在圆上,角的两边和圆相交一条弧所对的圆周角等于它所对的圆心角的一半师这节课我们学会了什么定理?是如何进行探索的?生我们学会了圆周角定理通过分类讨论的思想方法,渗透了由特殊到一般的转化方法对定理进行了研究

8、和证明师好,同学们今后在学习中,要注意探索问题方法的应用注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半(2)不能丢掉“ 一条弧所对的”而简单说成“圆周角等于圆心角的一半”知识决定命运 百度提升自我课后作业习题 34活动与探究同学们知道:顶点在圆上,并且两边都和圆相交的角,叫圆周角,因为一条弧所对的角圆周角等于它所对的圆心角的一半,而圆心角的度数等于它所对的弧的度数,所以圆周角的度数等于它所对的弧的度数的一半类似地,我们定义:顶点在圆外,并且两边都和圆相交的角叫圆外角如下图中,DPB 是圆外角,那么DPB 的度数与它所夹的两段弧 和 的度数有什么关系?类似地可定义圆内角及其度量(1)你的结论用文字表述为(不准出现字母和数学符号):_;(2)证明你的结论过程让学生通过思考讨论,想办法把圆外角转化成和已学过的圆周角联系起来,借助圆周角把DPB 的度数转化成它所夹的两段弧 和 的度数差的一半结果(1)圆外角的度数等于它所夹弧的度数差的一半(2)证明:连结 BCDCBDPB ABC ,DPB DCBABC 而DCB 的度数21ABC 的度数DPB ( 的度数 的度数) 12板书设计知识决定命运 百度提升自我3 31 圆周角和圆心角的关系(一)一、1探究圆周角的定义及其特征2探究圆周角定理及其证明二、课堂练习三、课时小结四、课后作业

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报