收藏 分享(赏)

电路理论基础 第七章(上) 一阶电路和二阶电路的时域分析(上).ppt

上传人:buyk185 文档编号:6842229 上传时间:2019-04-23 格式:PPT 页数:77 大小:2.46MB
下载 相关 举报
电路理论基础 第七章(上) 一阶电路和二阶电路的时域分析(上).ppt_第1页
第1页 / 共77页
电路理论基础 第七章(上) 一阶电路和二阶电路的时域分析(上).ppt_第2页
第2页 / 共77页
电路理论基础 第七章(上) 一阶电路和二阶电路的时域分析(上).ppt_第3页
第3页 / 共77页
电路理论基础 第七章(上) 一阶电路和二阶电路的时域分析(上).ppt_第4页
第4页 / 共77页
电路理论基础 第七章(上) 一阶电路和二阶电路的时域分析(上).ppt_第5页
第5页 / 共77页
点击查看更多>>
资源描述

1、本章重点,一阶和二阶电路的零输入响应、零状态响应和全响应的概念及求解,重点,一阶和二阶电路的阶跃响应概念及求解,1.动态电路方程的建立及初始条件的确定,返 回,含有动态元件电容和电感的电路称为动态电路。,1. 动态电路,7-1 动态电路的方程及其初始条件,当动态电路状态发生改变时(换路),需要经历一个变化过程才能达到新的稳定状态。这个变化过程称为电路的过渡过程。,下 页,上 页,特点,返 回,下 页,上 页,返 回,500kV断路器,过渡期为零,电阻电路,下 页,上 页,返 回,电容电路,下 页,上 页,返 回,i = 0 , uC= US,i = 0 , uC = 0,S接通电源后很长时间,

2、电容充电完毕,电路达到新的稳定状态:,S未动作前,电路处于稳定状态:,前一个稳定状态,过渡状态,新的稳定状态,?,有一过渡期,uL= 0, i=US /R,i = 0 , uL = 0,S接通电源后很长时间,电路达到新的稳定状态,电感视为短路:,S未动作前,电路处于稳定状态:,电感电路,下 页,上 页,前一个稳定状态,过渡状态,新的稳定状态,?,有一过渡期,返 回,下 页,上 页,S未动作前,电路处于稳定状态:,uL= 0, i=US /R,S断开瞬间,i = 0 , uL =,工程实际中在切断电容或电感电路时会出现过电压和过电流现象。,注意,返 回,过渡过程产生的原因,电路内部含有储能元件

3、L、C,电路在换路时能量发生变化,而能量的储存和释放都需要一定的时间来完成。,电路结构、状态发生变化,换路,下 页,上 页,返 回,应用KVL和电容的VCR得,若以电流为变量,2. 动态电路的方程,下 页,上 页,RC电路,返 回,应用KVL和电感的VCR得,若以电感电压为变量,下 页,上 页,RL电路,返 回,一阶电路,下 页,上 页,结论,含有一个动态元件电容或电感的线性电路,其电路方程为一阶线性常微分方程,称为一阶电路。,返 回,二阶电路,下 页,上 页,RLC电路,应用KVL和元件的VCR得,含有二个动态元件的线性电路,其电路方程为二阶线性常微分方程,称为二阶电路。,返 回,一阶电路,

4、一阶电路中只有一个动态元件,描述电路的方程是一阶线性微分方程。,描述动态电路的电路方程为微分方程。,动态电路方程的阶数通常等于电路中动态元件的个数。,二阶电路,二阶电路中有二个动态元件,描述电路的方程是二阶线性微分方程。,下 页,上 页,结论,返 回,高阶电路,电路中有多个动态元件,描述电路的方程是高阶微分方程。,动态电路的分析方法,根据KVL、KCL和VCR建立微分方程。,下 页,上 页,返 回,复频域分析法,时域分析法,求解微分方程。,本章采用,工程中高阶微分方程应用计算机辅助分析求解。,下 页,上 页,返 回,稳态分析和动态分析的区别,稳态,动态,下 页,上 页,直流时,返 回,t =

5、0与t = 0的概念,认为换路在t=0时刻进行,0 换路前一瞬间,0 换路后一瞬间,3.电路的初始条件,初始条件为 t = 0时,u 、i 及其各阶导数的值。,下 页,上 页,注意,0,0,t,返 回,图示为电容放电电路,电容原先带有电压Uo,求开关闭合后电容电压随时间的变化。,例1-1,解,特征根方程:,通解:,代入初始条件得:,在动态电路分析中,初始条件是得到确定解答的必需条件。,下 页,上 页,明确,返 回,t = 0+ 时刻,电容的初始条件,下 页,上 页,当i()为有限值时,返 回,q (0+) = q (0),uC (0+) = uC (0),换路瞬间,若电容电流保持为有限值, 则

6、电容电压(电荷)换路前、后保持不变。,电荷守恒,下 页,上 页,结论,返 回,电感的初始条件,t = 0+时刻,下 页,上 页,当uL为有限值时,返 回,L (0)= L (0),iL(0)= iL(0),磁链守恒,换路瞬间,若电感电压保持为有限值, 则电感电流(磁链)换路前、后保持不变。,下 页,上 页,结论,返 回,换路定律,电容电流和电感电压为有限值是换路定律成立的条件。,换路瞬间,若电感电压保持为有限值,则电感电流(磁链)换路前、后保持不变。,换路瞬间,若电容电流保持为有限值,则电容电压(电荷)换路前、后保持不变。,换路定律反映了能量不能跃变。,下 页,上 页,注意,返 回,电路初始值

7、的确定,(2)由换路定律,uC (0+) = uC (0)=8V,(1) 由0电路求 uC(0),uC(0)=8V,(3) 由0+等效电路求 iC(0+),例1-2,求 iC(0+)。,电容开路,下 页,上 页,电容用电压源替代,注意,返 回,iL(0+)= iL(0) =2A,例1- 3,t = 0时闭合开关S ,求 uL(0+)。,先求,应用换路定律:,电感用电流源替代,解,电感短路,下 页,上 页,由0+等效电路求 uL(0+),注意,返 回,求初始值的步骤:,1.由换路前电路(稳定状态)求uC(0)和iL(0)。,2.由换路定律得 uC(0+) 和 iL(0+)。,3.画0+等效电路。

8、,4.由0+电路求所需各变量的0+值。,(2)电容(电感)用电压源(电流源)替代。,(1)换路后的电路;,(取0+时刻值,方向与原假定的电容电压、电感电流方向相同)。,下 页,上 页,小结,返 回,iL(0+) = iL(0) = iS,uC(0+) = uC(0) = RiS,uL(0+)= - RiS,求 iC(0+) , uL(0+)。,例1-4,解,由0电路得,下 页,上 页,由0+电路得,返 回,例1-5,求S闭合瞬间各支路电流和电感电压。,解,下 页,上 页,由0电路得,由0+电路得,返 回,7-2 一阶电路的零输入响应,换路后外加激励为零,仅有动态元件初始储能产生的电压和电流。,

9、1.RC电路的零输入响应,已知 uC (0)=U0,零输入响应,下 页,上 页,返 回,特征根,则,下 页,上 页,代入初始值 uC (0+)=uC(0)=U0,A=U0,返 回,下 页,上 页,或,返 回,令 =RC , 称 为一阶电路的时间常数。,电压、电流是随时间按同一指数规律衰减的函数。,连续函数,跃变,响应与初始状态成线性关系,其衰减快慢与RC有关。,下 页,上 页,表明,返 回,时间常数 的大小反映了电路过渡过程时间的长短, = RC, 大过渡过程时间长, 小过渡过程时间短,电压初值一定:,R 大( C一定) i=u/R 放电电流小,C 大(R一定) W=Cu2/2 储能大,物理含

10、义,下 页,上 页,返 回, :电容电压衰减到原来电压36.8%所需的时间。工程上认为, 经过 3 5 , 过渡过程结束。,U0 0.368U0 0.135U0 0.05U0 0.007U0,U0 U0 e -1 U0 e -2 U0 e -3 U0 e -5,下 页,上 页,注意,返 回, t2 t1,t1 时刻曲线的斜率等于,次切距的长度,下 页,上 页,返 回,时间常数 的几何意义:,切点在定直线(x轴)上的垂足,到切线与定直线交点间的距离.,能量关系,电容不断释放能量被电阻吸收, 直到全部消耗完毕。,设 uC(0+)=U0,电容放出能量:,电阻吸收(消耗)能量:,下 页,上 页,返 回

11、,例2-1,图示电路中的电容原充有24V电压,求S闭合后,电容电压和各支路电流随时间变化的规律。,解,这是一个求一阶RC 零输入响应问题,有,下 页,上 页,返 回,分流得,下 页,上 页,返 回,下 页,上 页,例2-2,求:图示电路S闭合后各元件的电压和电流随时间变化的规律。,解,这是一个求一阶RC 零输入响应问题,有,u (0+)=u(0)=-20V,返 回,下 页,上 页,u,S,4F,+,+,-,-,i,-20V,250k,返 回,2. RL电路的零输入响应,特征方程 Lp+R=0,特征根,代入初始值,A= iL(0+)= I0,下 页,上 页,返 回,连续函数,跃变,电压、电流是随

12、时间按同一指数规律衰减的函数。,下 页,上 页,表明,返 回,响应与初始状态成线性关系,衰减快慢与L / R有关。,下 页,上 页,时间常数 的大小反映了电路过渡过程时间的长短。,L大 W=LiL2/2 初始能量大 R小 p=Ri2 放电过程消耗能量小, 大过渡过程时间长, 小过渡过程时间短,物理含义,电流初始值iL(0)一定:,返 回,能量关系,电感不断释放能量被电阻吸收, 直到全部消耗完毕。,设 iL(0+)=I0,电感放出能量:,电阻吸收(消耗)能量:,下 页,上 页,返 回,iL (0+) = iL(0) = 1 A,例2-3,t=0时,打开开关S,求uV,。电压表量程:50V。,解,

13、下 页,上 页,返 回,例2-4,t=0时,开关S由12,求电感电压和电流及开关两端电压u12。,解,下 页,上 页,返 回,下 页,上 页,返 回,一阶电路的零输入响应是由储能元件的初始值引起的响应, 都是由初始值衰减为零的指数衰减函数。,下 页,上 页,小结,返 回,一阶电路的零输入响应和初始值成正比,称为零输入线性。,衰减快慢取决于时间常数。,同一电路中所有响应具有相同的时间常数。,下 页,上 页,小结, = R C, = L/R,R 为与动态元件相连的一端口电路的等效电阻。,RC 电路,RL 电路,返 回,动态元件初始能量为零,由t 0时刻电路中外加激励作用所产生的响应。,方程:,7-

14、3 一阶电路的零状态响应,解答形式为:,1.RC电路的零状态响应,零状态响应,非齐次方程特解,齐次方程通解,下 页,上 页,非齐次线性常微分方程,返 回,与输入激励的变化规律有关,为电路的稳态解。,变化规律由电路参数和结构决定。,的通解,的特解,下 页,上 页,返 回,全解,uC (0+)=A+US= 0,A= US,由初始条件 uC (0+)=0 定积分常数 A,下 页,上 页,从以上式子可以得出,返 回,电压、电流是随时间按同一指数规律变化的函数;电容电压由两部分构成:,连续函数,跃变,稳态分量(强制分量),瞬态分量(自由分量),下 页,上 页,表明,+,返 回,响应变化的快慢,由时间常数

15、RC决定; 大,充电慢, 小充电就快。,响应与外加激励成线性关系。,能量关系:,电容储存能量,电源提供能量,电阻消耗能量,电源提供的能量一半消耗在电阻上,一半转换成电场能量储存在电容中。,下 页,上 页,表明,返 回,例3-1,t=0时,开关S闭合,已知 uC(0)=0,求(1)电容电压和电流;(2) uC80V时的充电时间t 。,解,(1)这是一个RC电路零状态响应问题,有:,(2)设经过t1秒,uC80V,下 页,上 页,返 回,2. RL电路的零状态响应,已知iL(0)=0,电路方程为,下 页,上 页,返 回,下 页,上 页,返 回,例3-2,t=0时,开关S打开,求t 0后iL、uL的

16、变化规律。,解,这是RL电路零状态响应问题,先化简电路,有,下 页,上 页,返 回,例3-3,t=0开关S打开,求t 0后iL、uL及电流源的电压。,解,这是RL电路零状态响应问题,先化简电路,有,下 页,上 页,返 回,7-4 一阶电路的全响应,电路的初始状态不为零,同时又有外加激励源作用时电路中产生的响应。,以RC电路为例,电路微分方程:,1. 全响应,全响应,下 页,上 页,解答为 uC(t) = uC + uC“, = RC,返 回,uC (0)=U0,uC (0+)=A+US=U0,A=U0 - US,由初始值定A,下 页,上 页,强制分量(稳态解),自由分量(瞬态解),返 回,2.

17、 全响应的两种分解方式,全响应 = 强制分量(稳态解)+自由分量(瞬态解),着眼于电路的两种工作状态,物理概念清晰,下 页,上 页,返 回,全响应 = 零状态响应 + 零输入响应,着眼于因果关系,便于叠加计算,下 页,上 页,零输入响应,零状态响应,返 回,下 页,上 页,返 回,例4-1,t=0 时 ,开关S打开,求t 0后的iL、uL。,解,这是RL电路全响应问题, 有,零输入响应:,零状态响应:,全响应:,下 页,上 页,返 回,或求出稳态分量,全响应,代入初值有,62A,A=4,下 页,上 页,返 回,3. 三要素法分析一阶电路,一阶电路的数学模型是一阶线性微分方程:,令 t = 0+

18、,其解答一般形式为:,下 页,上 页,特解,返 回,分析一阶电路问题转为求解电路的三个要素的问题。,用0+等效电路求解,用t的稳态电路求解,下 页,上 页,直流激励时:,注意,返 回,例4-3,已知:t=0 时合开关,求换路后的uC(t)。,解,下 页,上 页,返 回,例4-4,t =0时 ,开关闭合,求t 0后的iL、i1、i2。,解,三要素为,下 页,上 页,三要素公式,返 回,下 页,上 页,返 回,例4-5,已知:t=0时开关由12,求换路后的uC(t)。,解,三要素为,下 页,上 页,返 回,下 页,上 页,返 回,已知:电感无初始储能t = 0 时合S1 , t =0.2s时合S2 ,求两次换路后的电感电流i(t)。,0 t 0.2s,解,下 页,上 页,例4-7,返 回,1H,t 0.2s,下 页,上 页,返 回,1H,(0 t 0.2s),( t 0.2s),下 页,上 页,返 回,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 通信信息 > 电子设计

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报