1、ebp 和 esp 是 32 位的 SP,BP esp 是堆栈指针 ebp 是基址指针 ESP 与 SP 的关系就象 AX 与 AL,AH 的关系.32 位 CPU 所含有的寄存器有:4 个数据寄存器(EAX 、EBX、 ECX 和 EDX)2 个变址和指针寄存器(ESI 和 EDI) 2 个指针寄存器(ESP 和 EBP)6 个段寄存器(ES、CS、SS、DS、FS 和 GS)1 个指令指针寄存器(EIP) 1 个标志寄存器(EFlags)1、数据寄存器数据寄存器主要用来保存操作数和运算结果等信息,从而节省读取操作数所需占用总线和访问存储器的时间。32 位 CPU 有 4 个 32 位的通用
2、寄存器 EAX、EBX、ECX 和 EDX。对低 16 位数据的存取,不会影响高 16 位的数据。这些低 16 位寄存器分别命名为:AX、BX、CX 和 DX,它和先前的 CPU 中的寄存器相一致。4 个 16 位寄存器又可分割成 8 个独立的 8 位寄存器(AX:AH-AL 、BX:BH-BL、CX:CH-CL、DX:DH-DL),每个寄存器都有自己的名称,可独立存取。程序员可利用数据寄存器的这种“可分可合”的特性,灵活地处理字/字节的信息。寄存器 AX 和 AL 通常称为累加器(Accumulator) ,用累加器进行的操作可能需要更少时间。累加器可用于乘、除、输入/输出等操作,它们的使用
3、频率很高;寄存器 BX 称为基地址寄存器(Base Register) 。它可作为存储器指针来使用; 寄存器 CX 称为计数寄存器(Count Register)。在循环和字符串操作时,要用它来控制循环次数;在位操作中,当移多位时,要用 CL 来指明移位的位数;寄存器 DX 称为数据寄存器(Data Register)。在进行乘、除运算时,它可作为默认的操作数参与运算,也可用于存放 I/O 的端口地址。在 16 位 CPU 中, AX、BX、 CX 和 DX 不能作为基址和变址寄存器来存放存储单元的地址,但在 32 位 CPU 中,其 32 位寄存器 EAX、 EBX、ECX 和 EDX 不仅
4、可传送数据、暂存数据保存算术逻辑运算结果,而且也可作为指针寄存器,所以,这些 32 位寄存器更具有通用性。2、变址寄存器32 位 CPU 有 2 个 32 位通用寄存器 ESI 和 EDI。其低 16 位对应先前 CPU 中的 SI 和 DI,对低 16 位数据的存取,不影响高 16 位的数据。寄存器 ESI、EDI、SI 和 DI 称为变址寄存器 (Index Register),它们主要用于存放存储单元在段内的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。变址寄存器不可分割成 8 位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。它
5、们可作一般的存储器指针使用。在字符串操作指令的执行过程中,对它们有特定的要求,而且还具有特殊的功能。3、指针寄存器32 位 CPU 有 2 个 32 位通用寄存器 EBP 和 ESP。其低 16 位对应先前 CPU 中的 SBP 和SP,对低 16 位数据的存取,不影响高 16 位的数据。寄存器 EBP、ESP、BP 和 SP 称为指针寄存器(Pointer Register),主要用于存放堆栈内存储单元的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。指针寄存器不可分割成 8 位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。它们主要用
6、于访问堆栈内的存储单元,并且规定:BP 为基指针 (Base Pointer)寄存器,用它可直接存取堆栈中的数据;SP 为堆栈指针(Stack Pointer)寄存器,用它只可访问栈顶。4、段寄存器段寄存器是根据内存分段的管理模式而设置的。内存单元的物理地址由段寄存器的值和一个偏移量组合而成的,这样可用两个较少位数的值组合成一个可访问较大物理空间的内存地址。CPU 内部的段寄存器:CS代码段寄存器(Code Segment Register),其值为代码段的段值;DS数据段寄存器(Data Segment Register) ,其值为数据段的段值;ES附加段寄存器(Extra Segment
7、Register) ,其值为附加数据段的段值;SS堆栈段寄存器(Stack Segment Register),其值为堆栈段的段值;FS附加段寄存器(Extra Segment Register),其值为附加数据段的段值;GS附加段寄存器(Extra Segment Register) ,其值为附加数据段的段值。在 16 位 CPU 系统中,它只有 4 个段寄存器,所以,程序在任何时刻至多有 4 个正在使用的段可直接访问;在 32 位微机系统中,它有 6 个段寄存器,所以,在此环境下开发的程序最多可同时访问 6 个段。32 位 CPU 有两个不同的工作方式:实方式和保护方式。在每种方式下,段寄
8、存器的作用是不同的。有关规定简单描述如下:实方式: 前 4 个段寄存器 CS、DS、ES 和 SS 与先前 CPU 中的所对应的段寄存器的含义完全一致,内存单元的逻辑地址仍为“段值:偏移量” 的形式。为访问某内存段内的数据,必须使用该段寄存器和存储单元的偏移量。保护方式: 在此方式下,情况要复杂得多,装入段寄存器的不再是段值,而是称为“ 选择子”(Selector)的某个值。 。5、指令指针寄存器32 位 CPU 把指令指针扩展到 32 位,并记作 EIP,EIP 的低 16 位与先前 CPU 中的 IP 作用相同。指令指针 EIP、IP(Instruction Pointer)是存放下次将要
9、执行的指令在代码段的偏移量。在具有预取指令功能的系统中,下次要执行的指令通常已被预取到指令队列中,除非发生转移情况。所以,在理解它们的功能时,不考虑存在指令队列的情况。在实方式下,由于每个段的最大范围为 64K,所以,EIP 中的高 16 位肯定都为 0,此时,相当于只用其低 16 位的 IP 来反映程序中指令的执行次序。6、标志寄存器一、运算结果标志位1、进位标志 CF(Carry Flag)进位标志 CF 主要用来反映运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为 1,否则其值为 0。使用该标志位的情况有:多字(字节) 数的加减运算,无符号数的大小比较运算,
10、移位操作,字(字节) 之间移位,专门改变 CF 值的指令等。2、奇偶标志 PF(Parity Flag)奇偶标志 PF 用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则 PF 的值为 1,否则其值为 0。利用 PF 可进行奇偶校验检查,或产生奇偶校验位。在数据传送过程中,为了提供传送的可靠性,如果采用奇偶校验的方法,就可使用该标志位。3、辅助进位标志 AF(Auxiliary Carry Flag)在发生下列情况时,辅助进位标志 AF 的值被置为 1,否则其值为 0:(1)、在字操作时,发生低字节向高字节进位或借位时;(2)、在字节操作时,发生低 4 位向高 4 位进位或借位
11、时。对以上 6 个运算结果标志位,在一般编程情况下,标志位 CF、ZF 、SF 和 OF 的使用频率较高,而标志位 PF 和 AF 的使用频率较低。4、零标志 ZF(Zero Flag)零标志 ZF 用来反映运算结果是否为 0。如果运算结果为 0,则其值为 1,否则其值为 0。在判断运算结果是否为 0 时,可使用此标志位。5、符号标志 SF(Sign Flag)符号标志 SF 用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,所以,SF 也就反映运算结果的正负号。运算结果为正数时, SF的值为 0,否则其值为 1。6、溢出标志 OF(Overflow F
12、lag)溢出标志 OF 用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,则称为溢出,OF 的值被置为 1,否则,OF 的值被清为 0。“溢出”和“进位 ”是两个不同含义的概念,不要混淆。如果不太清楚的话,请查阅计算机组成原理课程中的有关章节。二、状态控制标志位状态控制标志位是用来控制 CPU 操作的,它们要通过专门的指令才能使之发生改变。1、追踪标志 TF(Trap Flag)当追踪标志 TF 被置为 1 时, CPU 进入单步执行方式,即每执行一条指令,产生一个单步中断请求。这种方式主要用于程序的调试。指令系统中没有专门的指令来改变标志位 TF 的值,但
13、程序员可用其它办法来改变其值。2、中断允许标志 IF(Interrupt-enable Flag)中断允许标志 IF 是用来决定 CPU 是否响应 CPU 外部的可屏蔽中断发出的中断请求。但不管该标志为何值,CPU 都必须响应 CPU 外部的不可屏蔽中断所发出的中断请求,以及CPU 内部产生的中断请求。具体规定如下:(1)、当 IF=1 时,CPU 可以响应 CPU 外部的可屏蔽中断发出的中断请求;(2)、当 IF=0 时,CPU 不响应 CPU 外部的可屏蔽中断发出的中断请求。CPU 的指令系统中也有专门的指令来改变标志位 IF 的值。3、方向标志 DF(Direction Flag)方向标
14、志 DF 用来决定在串操作指令执行时有关指针寄存器发生调整的方向。具体规定在第 5.2.11 节字符串操作指令中给出。在微机的指令系统中,还提供了专门的指令来改变标志位 DF 的值。三、32 位标志寄存器增加的标志位1、I/O 特权标志 IOPL(I/O Privilege Level)I/O 特权标志用两位二进制位来表示,也称为 I/O 特权级字段。该字段指定了要求执行 I/O指令的特权级。如果当前的特权级别在数值上小于等于 IOPL 的值,那么,该 I/O 指令可执行,否则将发生一个保护异常。2、嵌套任务标志 NT(Nested Task)嵌套任务标志 NT 用来控制中断返回指令 IRET
15、 的执行。具体规定如下:(1)、当 NT=0,用堆栈中保存的值恢复 EFLAGS、CS 和 EIP,执行常规的中断返回操作;(2)、当 NT=1,通过任务转换实现中断返回。3、重启动标志 RF(Restart Flag)重启动标志 RF 用来控制是否接受调试故障。规定:RF=0 时,表示“接受”调试故障,否则拒绝之。在成功执行完一条指令后,处理机把 RF 置为 0,当接受到一个非调试故障时,处理机就把它置为 1。4、虚拟 8086 方式标志 VM(Virtual 8086 Mode)如果该标志的值为 1,则表示处理机处于虚拟的 8086 方式下的工作状态,否则,处理机处于一般保护方式下的工作状态。