1、1.1.2 集合的表示方法,列举法与特征性质描述法,一、温故,1.指出下列四组对象中,能构成集合的是()A.某班所有的高个子男生 B.著名的艺术家C.一切很大的数 D.倒数等于它自身的实数,2.上节我们学习了集合,那么我们怎样来表示它呢?,二、知新,1、大写的字母表示集合,例如:集合A 集合B 集合D 集合S,2.自然语言描述法,例如:二高中学生的全体;全体中国人等等。,3.列举法,例如:“地球上的四大洋”可以构成一个集合,其元素分别为:太平洋、大西洋、北冰洋、印度洋我们可以把这些元素一一列举出来表示成:太平洋,大西洋,北冰洋,印度洋,再如:方程,所有的实数根表示为,5,-6,像这样把集合中的
2、元素一一列举出来,写在大括号内表示集合的方法叫做列举法.,使用列举法必须注意:, 适用的情况:,集合是有限集,元素又不太多,集合是有限集,元素较多,有一定的规律,可列出几个元素作为代表,其他元素用省略号表示,有规律的无限集,用列举法表示集合时,不必考虑元素的前后顺序,要注意不重不漏,例1.用列举法表示下列集合,(1)大于3且小于10的所有奇数构成的集合,( 2)方程 x2-x=0 的所有实数根组成的集合表示为:,(3)一次函数y=-x+1的图像与两坐标轴所有交点构成的集合表示为:,解:5,7,9,解:0,1,解: (1,0),(0,1),练习 用列举法表示下列集合:,(1) 由 1、2、3、4
3、、5、6 构成的集合;,解:1,2,3,4,5,6 ,注:大括号不能缺失.,(2) 小于100的所有自然数组成的集合;,解:0,1,2,3,99,注:有些集合元素个数较多,在不至于发生误解的情况下,可列几个元素为代表,其他元素用省略号表示,练习,想一想:1,2 与 2,1 是否表示同一个集合?注:用列举法表示集合时不必考虑元素的前后次序,(3) 比 2 大 3 的实数的全体;,注:有的集合只有一个元素如 a 等,但是 a 是集合,a 是集合 a 的一个元素,有 a a ,解: 5 .,练习,4.特征性质描述法,特征性质:一般地,如果在集合A中,属于集合A的任意 一个元素都具有性质p,而不属于集
4、合A的元素都不具 有性质p,则性质p叫做集合A的一个特征性质。,有一类集合如大于5的自然数所组成的集合、正偶数构成的集合等,这类集合用列举法来表示比较繁琐,这一类情况我们用集合中元素的特征性质来描述。,满足不等式2x4的全体实数构成的集合的特征性质是,所以A集合可表示为,性质描述法,给定 x 的取值集合 I,如果属于集合 A 的任意元素 x 都具有性质 p,而不属于集合 A 的元素都不具有性质 p,则性质 p 叫做集合 A 的一个特征性质于是集合 A 可以用它的特征性质描述为 x I | p , 它表示集合 A 是由集合 I 中具有性质 p(x) 的所有元素构成的这种表示集合的方法,叫做性质描
5、述法,大于5的自然数所组成的集合用性质描述法表示为,正偶数2,4,6,8,的全体构成的集合,该集合的特征性质“能被2整除,且大于0”,集合可表示为,例2 用性质描述法表示下列集合:,练习 1 .试分别用列举法和描述法表示下列集合,并 体会如何选择适当的表示法来表示集合(1)方程 的所有实数根组成的集合(2)由大于10小于20的所有整数组成的集合,同学们:总结一下两种方法的优缺点,并指出在表示集合时该如何选择这两种方法!,2.把下列集合用另一种形式表示出来(1)1,5(2) (3)2,4,6,8 (4) (5),三、小结,列举法:多用于有限集描述法:多用于无限集,四、作业,课本第6页习题1.2第1、3题在作业本上完成,