1、解:,(1)计算外力偶矩,例题3.1,3.2 外力偶矩的计算 扭矩和扭矩图,传动轴,已知转速 n=300r/min,主动轮A输入功率 PA=45kW,三个从动轮输出功率分别为 PB=10kW,PC=15kW, PD=20kW.试绘轴的扭矩图.,由公式,(2)计算扭矩,(3) 扭矩图,3.2 外力偶矩的计算 扭矩和扭矩图,3.2 外力偶矩的计算 扭矩和扭矩图,传动轴上主、从动轮安装的位置不同,轴所承受的最大扭矩也不同。,3.2 外力偶矩的计算 扭矩和扭矩图,3.3 纯剪切,一、薄壁圆筒扭转时的切应力,将一薄壁圆筒表面用纵向平行线和圆周线划分;两端施以大小相等方向相反一对力偶矩。,圆周线大小形状不
2、变,各圆周线间距离不变;纵向平行线仍然保持为直线且相互平行,只是倾斜了一个角度。,观察到:,结果说明横截面上没有正应力,3.3 纯剪切,采用截面法将圆筒截开,横截面上分布有与截面平行的切应力。由于壁很薄,可以假设切应力沿壁厚均匀分布。,由平衡方程 ,得,二、切应力互等定理,3.3 纯剪切,在相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于两个平面的交线,方向则共同指向或共同背离这一交线。,纯剪切,各个截面上只有切应力没有正应力的情况称为纯剪切,切应力互等定理:,3.3 纯剪切,三、切应变 剪切胡克定律,在切应力的作用下,单元体的直角将发生微小的改变,这个改变量 称为切应变。,
3、当切应力不超过材料的剪切比例极限时,切应变与切应力成正比,这个关系称为剪切胡克定律。,G 剪切弹性模量(GN/m2),各向同性材料,三个弹性常数之间的关系:,3.4 圆轴扭转时的应力,1.变形几何关系,观察变形:,圆周线长度形状不变,各圆周线间距离不变,只是绕轴线转了一个微小角度;纵向平行线仍然保持为直线且相互平行,只是倾斜了一个微小角度。,圆轴扭转的平面假设:,圆轴扭转变形前原为平面的横截面,变形后仍保持为平面,形状和大小不变,半径仍保持为直线;且相邻两截面间的距离不变。,3.4 圆轴扭转时的应力,扭转角(rad),dx微段两截面的 相对扭转角,边缘上a点的错动距离:,边缘上a点的切应变:,
4、 发生在垂直于半径的平面内。,3.4 圆轴扭转时的应力,距圆心为的圆周上e点的错动距离:,距圆心为处的切应变:,也发生在垂直于 半径的平面内。,扭转角 沿x轴的变化率。,3.4 圆轴扭转时的应力,2.物理关系,根据剪切胡克定律,距圆心为 处的切应力:,垂直于半径,横截面上任意点的切应力 与该点到圆心的距离 成正比。,3.4 圆轴扭转时的应力,3.静力关系,3.4 圆轴扭转时的应力,公式适用于: 1)圆杆 2),在圆截面边缘上,有最大切应力,横截面上某点的切应力的方向与扭矩方向相同,并垂直于半径。切应力的大小与其和圆心的距离成正比。,实心轴,3.4 圆轴扭转时的应力,与 的计算,空心轴,令,则,
5、3.4 圆轴扭转时的应力,3.4 圆轴扭转时的应力,实心轴与空心轴 与 对比,3.4 圆轴扭转时的应力,扭转强度条件:,1. 等截面圆轴:,2. 阶梯形圆轴:,3.4 圆轴扭转时的应力,强度条件的应用,(1)校核强度,(2)设计截面,(3)确定载荷,3.4 圆轴扭转时的应力,例3.2 由无缝钢管制成的汽车传动轴,外径D=89mm、壁厚=2.5mm,材料为20号钢,使用时的最大扭矩T=1930Nm,=70MPa.校核此轴的强度。,解:(1)计算抗扭截面模量,cm3,(2) 强度校核,满足强度要求,3.4 圆轴扭转时的应力,例3.3 如把上例中的传动轴改为实心轴,要求它与原来的空心轴强度相同,试确
6、定其直径。并比较实心轴和空心轴的重量。,解:当实心轴和空心轴的最大应力同为时,两轴的许可扭矩分别为,若两轴强度相等,则T1=T2 ,于是有,3.4 圆轴扭转时的应力,在两轴长度相等,材料相同的情况下,两轴重量之比等于横截面面积之比。,可见在载荷相同的条件下,空心轴的重量仅为实心轴的31% 。,实心轴和空心轴横截面面积为,已知:P7.5kW, n=100r/min,最大切应力不得超过40MPa,空心圆轴的内外直径之比 = 0.5。二轴长度相同。,求: 实心轴的直径d1和空心轴的外直径D2;确定二轴的重量之比。,解: 首先由轴所传递的功率计算作用在轴上的扭矩,实心轴,例题3.4,3.4 圆轴扭转时
7、的应力,空心轴,d20.5D2=23 mm,3.4 圆轴扭转时的应力,确定实心轴与空心轴的重量之比,长度相同的情形下,二轴的重量之比即为横截面面积之比:,实心轴,d1=45 mm,空心轴,D246 mm,d223 mm,P1=14kW, P2= P3= P1/2=7 kW,n1=n2= 120r/min,解:1、计算各轴的功率与转速,2、计算各轴的扭矩,例题3.5,3.4 圆轴扭转时的应力,求:各轴横截面上的最大切应力;并校核各轴强度。,已知:输入功率P114kW,P2= P3=P1/2,n1=n2=120r/min, z1=36,z3=12;d1=70mm, d 2=50mm, d3=35m
8、m.=30MPa。.,T1=M1=1114 N m,T2=M2=557 N m,T3=M3=185.7 N m,3、计算各轴的横截面上的最大切应力;校核各轴强度,3.4 圆轴扭转时的应力,满足强度要求。,相对扭转角,抗扭刚度,3.5 圆轴扭转时的变形,单位长度扭转角,扭转刚度条件,3.5 圆轴扭转时的变形,许用单位扭转角,rad/m,/m,扭转强度条件,扭转刚度条件,已知T 、D 和,校核强度,已知T 和,设计截面,已知D 和,确定许可载荷,已知T 、D 和/,校核刚度,已知T 和/,设计截面,已知D 和/,确定许可载荷,3.5 圆轴扭转时的变形,例题3.6,3.5 圆轴扭转时的变形,某传动轴
9、所承受的扭矩T=200Nm,轴的直径d=40mm,材料的=40MPa,剪切弹性模量G=80GPa,许可单位长度转角/=1 /m。试校核轴的强度和刚度。,传动轴的转速为n=500r/min,主动轮A 输入功率P1=400kW,从动轮C,B 分别输出功率P2=160kW,P3=240kW。已知=70MPa,=1/m,G=80GPa。 (1)试确定AC 段的直径d1 和BC 段的直径d2;(2)若AC 和BC 两段选同一直径,试确定直径d;(3)主动轮和从动轮应如何安排才比较合理?,解:,1.外力偶矩,例题3.7,3.5 圆轴扭转时的变形,2.扭矩图,按刚度条件,3.直径d1的选取,按强度条件,3.
10、5 圆轴扭转时的变形,按刚度条件,4.直径d2的选取,按强度条件,5.选同一直径时,3.5 圆轴扭转时的变形,6.将主动轮安装在两从动轮之间,受力合理,3.5 圆轴扭转时的变形,3.7 非圆截面杆扭转的概念,平面假设不成立。变形后横截面成为一个凹凸不平的曲面,这种现象称为翘曲。,3.7 非圆截面杆扭转的概念,杆件扭转时,横截面上边缘各点的切应力都与截面边界相切。,开口/闭口薄壁杆件扭转比较,3.7 非圆截面杆扭转的概念,小结,1、受扭物体的受力和变形特点,2、扭矩计算,扭矩图绘制,3、圆轴扭转时横截面上的应力计算及强度计算,4、圆轴扭转时的变形及刚度计算,第四章 弯曲内力,目录,第四章 弯曲内
11、力,4-1 弯曲的概念和实例 4-2 受弯杆件的简化 4-3 剪力和弯矩 4-4 剪力方程和弯矩方程剪力图和弯矩图 4-5 载荷集度、剪力和弯矩间的关系 4-6 平面曲杆的弯曲内力,目录,4-1 弯曲的概念和实例,起重机大梁,目录,车削工件,目录,4-1 弯曲的概念和实例,火车轮轴,目录,4-1 弯曲的概念和实例,弯曲特点,以弯曲变形为主的杆件通常称为梁,目录,4-1 弯曲的概念和实例,平面弯曲,平面弯曲: 弯曲变形后的轴线为平面曲线, 且该平面曲线仍与外力共面。,目录,4-1 弯曲的概念和实例,对称弯曲,常见弯曲构件截面,目录,4-1 弯曲的概念和实例,梁的载荷与支座,集中载荷,分布载荷,集
12、中力偶,固定铰支座,活动铰支座,固定端,4-2 受弯杆件的简化,目录,目录,4-2 受弯杆件的简化,火车轮轴简化,目录,4-2 受弯杆件的简化,目录,4-2 受弯杆件的简化,吊车大梁简化,均匀分布载荷 简称均布载荷,目录,4-2 受弯杆件的简化,非均匀分布载荷,目录,4-2 受弯杆件的简化,简支梁,外伸梁,悬臂梁,FAx,FAy,FBy,FAx,FAy,FBy,FAx,FAy,MA,静定梁的基本形式,目录,4-2 受弯杆件的简化,FS剪力,平行于横截面的内力合力,M 弯矩,垂直于横截面的内力系的合力偶矩,4-3 剪力和弯矩,目录,截面上的剪力对所选梁段上任意一点的矩为顺时针转向时,剪力为正;反
13、之为负。,+,_,截面上的弯矩使得梁呈凹形为正;反之为负。,4-3 剪力和弯矩,左上右下为正;反之为负,左顺右逆为正;反之为负,目录,解:,1. 确定支反力,2. 用截面法研究内力,目录,例题4-1,4-3 剪力和弯矩,分析右段得到:,目录,4-3 剪力和弯矩,截面上的剪力等于截面任一侧外力的代数和。,目录,4-3 剪力和弯矩,截面上的弯矩等于截面任一侧外力对截面形心力矩的代数和。,目录,4-3 剪力和弯矩,悬臂梁受均布载荷作用。,试写出剪力和弯矩方程,并画出剪力图和弯矩图。,解:任选一截面x ,写出剪力和弯矩方程,依方程画出剪力图和弯矩图,由剪力图、弯矩图可见。最大剪力和弯矩分别为,目录,例
14、题4-2,4-4 剪力方程和弯矩方程 剪力图和弯矩图,图示简支梁C点受集中力作用。,试写出剪力和弯矩方程,并画出剪力图和弯矩图。,解:1确定约束力,FAyFb/l FByFa/l,2写出剪力和弯矩方程,AC,CB,3. 依方程画出剪力图和弯矩图。,目录,例题4-3,4-4 剪力方程和弯矩方程 剪力图和弯矩图,图示简支梁C点受集中力偶作用。,试写出剪力和弯矩方程,并画出剪力图和弯矩图。,解:1确定约束力,FAyM / l FBy -M / l,2写出剪力和弯矩方程,AC,CB,3. 依方程画出剪力图和弯矩图。,目录,例题4-4,4-4 剪力方程和弯矩方程 剪力图和弯矩图,简支梁受均布载荷作用,试
15、写出剪力和弯矩方程,并画出剪力图和弯矩图。,解:1确定约束力,FAy FBy ql/2,2写出剪力和弯矩方程,3.依方程画出剪力图和弯矩图。,目录,例题4-5,4-4 剪力方程和弯矩方程 剪力图和弯矩图,已知平面刚架上的均布载荷集度q,长度l。,试:画出刚架的内力图。,例题4-6,解:1、确定约束力,2、写出各段的内力方程,竖杆AB:A点向上为y,B,平面刚架的内力,目录,横杆CB:C点向左为x,平面刚架的内力,目录,竖杆AB:,根据各段的内力方程画内力图,横杆CB:,平面刚架的内力,目录,4-5 载荷集度、剪力和弯矩间的关系,载荷集度、剪力和弯矩关系:,目录,载荷集度、剪力和弯矩关系:,q0
16、,Fs=常数, 剪力图为水平直线;M(x) 为 x 的一次函数,弯矩图为斜直线。,2.q常数,Fs(x) 为 x 的一次函数,剪力图为斜直线;M(x) 为 x 的二次函数,弯矩图为抛物线。分布载荷向上(q 0),抛物线呈凹形;分布载荷向上(q 0),抛物线呈凸形。,3. 剪力Fs=0处,弯矩取极值。,4. 集中力作用处,剪力图突变;集中力偶作用处,弯矩图突变,4-5 载荷集度、剪力和弯矩间的关系,目录,5、也可通过积分方法确定剪力、 弯矩图上各点处的数值。,从左到右,向上(下)集中力作用处,剪力图向上(下)突变,突变幅度为集中力的大小。弯矩图在该处为尖点。,从左到右,顺(逆)时针集中力偶作用处
17、,弯矩图向上(下)突变,突变幅度为集中力偶的大小。剪力图在该点没有变化。,4-5 载荷集度、剪力和弯矩间的关系,目录,微分关系绘制剪力图与弯矩图的方法:, 根据载荷及约束力的作用位置,确定控制面。, 应用截面法确定控制面上的剪力和弯矩数值。, 建立FS一x和M一x坐标系,并将控制面上的剪力和弯矩值标在相应的坐标系中。, 应用平衡微分方程确定各段控制面之间的剪力图和弯矩图的形状,进而画出剪力图与弯矩图。,4-5 载荷集度、剪力和弯矩间的关系,目录,例题4-6 简支梁受力的大 小和方向如图示。,试画出其剪力图和弯矩图。,解:1确定约束力,求得A、B 二处的约束力 FAy0.89 kN , FBy1
18、.11 kN,根据力矩平衡方程,2确定控制面,在集中力和集中力偶作用处的两侧截面以及支座反力 内侧截面均为控制面。即A、C、D、E、F、B截面。,4-5 载荷集度、剪力和弯矩间的关系,目录,3建立坐标系 建立 FSx 和 Mx 坐标系,5根据微分关系连图 线,4应用截面法确定控制面上的剪力和弯矩值,并将其标在 FS x和 Mx 坐标系中。,0.89 kN=,1.11 kN,4-5 载荷集度、剪力和弯矩间的关系,目录,解法2:1确定约束力,FAy0.89 kN FFy1.11 kN,2确定控制面为A、C、D、B两侧截面。,3从A截面左测开始画剪力图。,4-5 载荷集度、剪力和弯矩间的关系,目录,
19、4从A截面左测开始画弯矩图。,从A左到A右,从C左到C右,从D左到D右,从A右到C左,从C右到D左,4-5 载荷集度、剪力和弯矩间的关系,从D右到B左,从B左到B右,目录,例题4-7 试画出梁 的剪力图和弯矩图。,解:1确定约束力,根据梁的整体平衡,由,求得A、B 二处的约束力,2确定控制面,由于AB段上作用有连续分布载荷,故A、B两个截 面为控制面,约束力FBy右侧的截面,以及集中力qa 左侧的截面,也都是控制面。,4-5 载荷集度、剪力和弯矩间的关系,目录,3建立坐标系 建立FSx和Mx坐标系,4确定控制面上的剪力值,并将其标在FSx中。,5确定控制面上的弯矩值,并将其标在Mx中。,4-5
20、 载荷集度、剪力和弯矩间的关系,目录,解法2:1确定约束力,2确定控制面,即A、B、D两侧截面。,3从A截面左测开始画剪力图。,4-5 载荷集度、剪力和弯矩间的关系,目录,4求出剪力为零的点 到A的距离。,B点的弯矩为-1/27qa/47a/4+81qa2/32=qa2,AB段为上凸抛物线。且有 极大值。该点的弯矩为1/29qa/49a/4=81qa2/32,5从A截面左测开始画弯 矩图,4-5 载荷集度、剪力和弯矩间的关系,目录,例题4-8 试画出图示有中间 铰梁的剪力图和弯矩图。,解:1确定约束力,从铰处将梁截开,4-5 载荷集度、剪力和弯矩间的关系,目录,平面曲杆,某些构件(吊钩等)其轴
21、线为平面曲线称为平面曲杆。当外力与平面曲杆均在同一平面内时,曲杆的内力有轴力、剪力和弯矩。,目录,4-6 平面曲杆的弯曲内力,目录,画出该曲杆的内力图,解:写出曲杆的内力方程,4-6 平面曲杆的弯曲内力,例题4-10,小结,1、熟练求解各种形式静定梁的支座反力,2、明确剪力和弯矩的概念,理解剪力和弯矩的正负号规定,3、熟练计算任意截面上的剪力和弯矩的数值,4、熟练建立剪力方程、弯矩方程,正确绘制剪力图和弯矩图,目录,第五章 弯曲应力,目录,第五章 弯曲应力,5-2 纯弯曲时的正应力,5-3 横力弯曲时的正应力,5-4 弯曲切应力,5-6 提高弯曲强度的措施,目录,5-1 纯弯曲,回顾与比较,内
22、力,应力,目录,5-1 纯弯曲,纯弯曲,梁段CD上,只有弯矩,没有剪力纯弯曲,梁段AC和BD上,既有弯矩,又有剪力横力弯曲,5-1 纯弯曲,目录,5-2 纯弯曲时的正应力,一、变形几何关系,平面假设:横截面变形后保持为平面,且仍然垂直于变形后的梁轴线,只是绕截面内某一轴线偏转了一个角度。,凹入一侧纤维缩短,突出一侧纤维伸长,中间一层纤维长度不变中性层,中间层与横截面的交线中性轴,5-2 纯弯曲时的正应力,目录,设想梁是由无数 层纵向纤维组成,胡克定理,5-2 纯弯曲时的正应力,目录,建立坐标,二、物理关系,(a),(b),三、静力学关系,5-2 纯弯曲时的正应力,目录,(c),FN、My、Mz
23、,正应力公式,变形几何关系,物理关系,静力学关系,为梁弯曲变形后的曲率,为曲率半径,,5-2 纯弯曲时的正应力,目录,正应力分布,5-2 纯弯曲时的正应力,目录,与中性轴距离相等的点, 正应力相等;,正应力大小与其到中性轴距离成正比;,中性轴上,正应力等于零,常见截面的 IZ 和 WZ,圆截面,矩形截面,空心圆截面,空心矩形截面,5-2 纯弯曲时的正应力,目录,5-3 横力弯曲时的正应力,目录,弹性力学精确分析表明,当跨度 l 与横截面高度 h 之比 l / h 5 (细长梁)时,纯弯曲正应力公式对于横力弯曲近似成立。,横力弯曲,横力弯曲正应力公式,横力弯曲最大正应力,目录,5-3 横力弯曲时
24、的正应力,细长梁的纯弯曲或横力弯曲,横截面惯性积 IYZ =0,弹性变形阶段,公式适用范围,弯曲正应力强度条件,1.等截面梁弯矩最大的截面上,2.离中性轴最远处,4.脆性材料抗拉和抗压性能不同,两方面都要考虑,3.变截面梁要综合考虑 与,目录,5-3 横力弯曲时的正应力,1.C 截面上K点正应力,2.C 截面上最大正应力,3.全梁上最大正应力,4.已知E=200GPa, C 截面的曲率半径,1. 求支反力,(压应力),解:,例题5-1,目录,5-3 横力弯曲时的正应力,2.C 截面最大正应力,C 截面弯矩,C 截面惯性矩,目录,5-3 横力弯曲时的正应力,3. 全梁最大正应力,最大弯矩,截面惯性矩,目录,5-3 横力弯曲时的正应力,4. C 截面曲率半径,C 截面弯矩,C 截面惯性矩,目录,5-3 横力弯曲时的正应力,