1、以华人数学家命名的数学成果集锦以华人数学家命名的数学成果集锦 数学是几千年来人类智慧的结,已渗透到现实生活的一切领域。在中国数学发展的历史长河中涌现出了许许多多的杰出人物,本网集合的这十几位数学大师就是其中最优秀的代表。他们为振兴我国的数学事业而不断地奋斗,他们大都是某些数学领域的奠基人或集大成者在确定数学进程方面起了决定性的作用。他们的思想和成就体现了各自所处时代数学活动的主流。中国古代算术的许多研究成果里面就早已孕育了后来西方数学才涉及的思想方法,近代也有不少世界领先的数学研究成果就是以华人数学家命名的。著名数学家阿贝尔曾说:“一个人如果想要在数学上有所进步,就必须向大师学习。 ”因此,我
2、们整合了一些以华人数学家命名的数学成果供大家参考。华人数学家李善兰 【李氏恒等式】数学家李善兰在级数求和方面的研究成果,在国际上被命名为“李氏恒等式” 。中国清代数学家、天文学家、翻译家和教育家,近代科学的先驱者。原名心兰,字竞芳,号秋纫,别号壬叔,浙江海宁县硖石镇人,生于嘉庆十六年,卒于光绪八年。李善兰自幼酷爱数学。十岁时学习九章算术 。十五岁时读明末徐光启、利玛窦合译的欧几里得几何原本前六卷,尽解其意。后来,他到杭州应试,买回元代李冶的测圆海镜 、清代戴震(17241777)的勾股割圆记等算书,认真研读;又在嘉兴等地与数学家顾观光(17991862)、张文虎(18081888)、汪曰桢(1
3、8131881)以及戴煦、罗士琳(17741853)、徐有壬(18001860)等人相识,经常在学术上相互切磋。自此数学造诣日臻精深,时有心得,辄复著书,1845 年前后就得到并发表了具有解析几何思想和微积分方法的数学研究成果“尖锥术” 。18521859 年,李善兰在上海墨海书馆与英国传教士、汉学家伟烈亚力等人合作翻译出版了几何原本后九卷,以及代数学 、代微积拾级 、 谈天 、 重学 、 圆锥曲线说 、 植物学等西方近代科学著作,又译奈端数理(即牛顿自然哲学的数学原理)四册(未刊),这是解析几何、微积分、哥白尼日心说、牛顿力学、近代植物学传入中国的开端。李善兰的翻译工作是有独创性的,他创译了
4、许多科学名词,如“代数” 、 “函数” 、 “方程式” 、 “微分” 、“积分” 、 “级数” 、 “植物” 、 “细胞”等,匠心独运,切贴恰当,不仅在中国流传,而且东渡日本,沿用至今。李善兰为近代科学在中国的传播和发展作出了开创性的贡献。李善兰“尖锥术”书影1860 年起,他先后在徐有壬、曾国藩军中作幕僚,与化学家徐寿、数学家华蘅芳等人一起,积极参与洋务运动中的科技学术活动。1867 年他在南京出版则古昔斋算学 ,汇集了二十多年来在数学、天文学和弹道学等方面的著作,计有方圆阐幽 、 弧矢启秘 、对数探源 、 垛积比类 、 四元解 、 麟德术解 、 椭圆正术解 、椭圆新术 、 椭圆拾遗 、 火
5、器真诀 、 对数尖锥变法释 、 级数回求和天算或问等 13 种 24 卷,共约 15 万字。1868 年,李善兰被荐任北京同文馆天文算学总教习,直至 1882年他逝世为止,从事数学教育十余年,其间审定了同文馆算学课艺 、 同文馆珠算金等数学教材,培养了一大批数学人才,是中国近代数学教育的鼻祖。李善兰生性落拓,潜心科学,淡于利禄。晚年官至三品,授户部正郎、广东司行走、总理各国事务衙门章京等职,但他从来没有离开过同文馆教学岗位,也没有中断过科学研究特别是数学研究工作。他的数学著作,除则古昔斋算学外,尚有考数根法 、 粟布演草 、 测圆海镜解 、 九容图表 ,而未刊行者,有造整数勾股级数法 、 开方
6、古义 、 群经算学考 、 代数难题解等。李善兰在数学研究方面的成就,主要有尖锥术、垛积术和素数论三项。尖锥术理论主要见于方圆阐幽 、 弧矢启秘 、 对数探源三种著作,成书年代约为 1845 年,当时解析几何与微积分学尚未传入中国。李善兰创立的“尖锥”概念,是一种处理代数问题的几何模型,他对“尖锥曲线”的描述实质上相当于给出了直线、抛物线、立方抛物线等方程他创造的“尖锥求积术” 。相当于幂函数的定积分公式和逐项积分法则他用“分离元数法”独立地得出了二项平方根的幂级数展开式结合“尖锥求积术” ,得到了无穷级数表达式各种三角函数和反三角函数的展开式,以及对数函数的展开式在使用微积分方法处理数学问题方
7、面取得了创造性的成就。垛积术理论主要见于垛积比类,写于 18591867 年间,这是有关高阶等差级数的著作。李善兰从研究中国传统的垛积问题入手,获得了一些相当于现代组合数学中的成果。例如, “三角垛有积求高开方廉隅表”和“乘方垛各廉表”实质上就是组合数学中著名的第一种斯特林数和欧拉数。驰名中外的“李善兰恒等式”自 20 世纪 30年代以来,受到国际数学界的普遍关注和赞赏。可以认为, 垛积比类是早期组合论的杰作。华人数学家华罗庚 【华氏定理】数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理” ;另外他与数学家王元提出多重积分近似计算的方法被国际誉为“华王方法” 。华罗庚,中国现代数
8、学家。1910 年 11 月 12 日生于江苏省金坛县。华罗庚 1924 年金坛中学初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,但他刻苦自修数学,1930 年在科学上发表了关于代数方程式解法的文章,被邀到清华大学工作,开始了数论的研究,1934 年成为中华教育文化基金会研究员。1936 年作为访问学者去英国剑桥大学工作。1938 年回国,受聘为西南联合大学教授。1946 年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学,1948 年始,他为伊利诺伊大学教授。1950 年回国。历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全
9、国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究与教授工作并取得突出成就。40 年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对 G.H.哈代与J.E.
10、李特尔伍德关于华林问题及 E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。在代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。其专著堆垒素数论系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表 40 余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为 20 世纪经典数论著作之一,其专著多个复变典型域上的调和分析以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式,获中国
11、自然科学奖一等奖。倡导应用数学与计算机的研制,曾出版统筹方法平话 、 优选学等多部著作并亲自在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法” 。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文 200 多篇,并有专著和科普性著。1985 年 6 月 12 日,华罗庚应邀到日本东京大学作学术报告。他先中文,后改用英语演讲。日本学者被他精彩的演说深深吸引,原定 45 分钟的报告在经久不息的掌声中被延长到一个多小时。当他满头大汗结束讲话时,突然心脏病发作倒在讲台上。他用行动实践了自己的诺言:“最大的希望就是工作到生命的最后一刻。 ”华人数学家苏步青 【
12、苏氏锥面】数学家苏步青在仿射微分几何学方面的研究成果国际上命名为“苏氏锥面” 。姓名:苏步青 性别:男 出生年月:1902 年-2003 年 籍贯:浙江平阳 学历:日本东北帝国大学研究院理学博士学位 职务:原浙江大学教务长,复旦大学教授、校长、名誉校长,中国数学会以副理事长,国务院学位委员会委员,民盟中央副主席等。苏步青(1902-2003)教育家,数学家,浙江平阳人。1931 年获日本东北帝国大学研究院理学博士学位。回国后,任浙江大学教授、数学系主任。建国后,历任浙江大学教务长,复旦大学教授、校长、名誉校长,中国数学会以副理事长,国务院学位委员会委员,民盟中央副主席,上海市第五届政协副主席,
13、上海市第七届人大常委会副主任,第六届全国人大教育科学文化卫生委员会副主任委员,中国科学院物理学数学部委员,第七届全国政协副主席,民盟中央参议委员会主任。1959 年加入中国共产党。是第二、三、七届全国人大代表,第五、六届全国人大常委,第一届全国政协委员。创立了具有特色的微分几何学派,开拓了仿射微分几何、射影微分几何、空间微分几何等领域,开创了计算几何的研究方向。著有射影曲面概论 、 仿射微分几何学 、 射影共轭网概论等。华人数学家熊庆来 【熊氏无穷级】数学家熊庆来关于整函数与无穷级的亚纯函数的研究成果被国际数学界誉为“熊氏无穷级” 。熊庆来是我国著名数学家、教育家、现代数学的耕耘者,为我国数学
14、教学和研究作了许多开创性的工作,不愧为数学界的一代宗师。熊庆来,字迪之,清代光绪十七年(公元 1891 年)出生于云南省弥勒县息宰村。他自幼养成勤奋好学的良好习惯,再加上非凡的记忆力与天才的语言接受能力,常令教育过他的中外教师惊叹不已。1913 年他以优异成绩考取云南教育司主持的留学比利时公费生,但因第一次世界大战爆发,只得转赴法国,在格诺大学、巴黎大学等大学功读数学,获理科硕士学位。他用法文撰写发表了无穷极之函数问题等多篇论文,以其独特精辟严谨的论证获得法国数学界的交口赞誉。1921 年熊庆来学成归国,先后在云南甲种工业学校、东南大学(今南京大学)、南京高等师范大学、西北大学、清华大学担任教
15、授和系主任。他创办了中国近代史上第一个近代数学研究机构清华大学算学研究部和东南大学、清华大学等 3 所大学的数学系,以及中国数学报。培养了华罗康、陈省身、吴大任、庄圻泰等一批享誉国内外的知名数学家。著名物理学家钱三强、赵九章、钱伟长、彭恒五等也是熊庆来到清华大学后培养出来的学生。这期间他潜心于学术研究与著述,编写的高等数学分析等 10 多种大学教材是当时第一次用中文写成的数学教科书。熊庆来在“函数理论”领域造诣很深。1932 年他代表中国第一次出席了瑞士苏黎士国际数学家大会,后到法国普旺加烈学院从事了两年数论的研究,获法国国家理学博士学位,成为第一个获此学位的中国人。此间,熊庆来写成了论文关于
16、整函数与无穷极的亚纯函数 ,该文中定义的无穷极,被数学界称为“熊氏无穷极”又称“熊氏定理” ,被载入世界数学史册,奠定了他在国际数学界的地位。作为一位学者,熊庆来自早期从事教育工作起,就把培育人才当作头等大事。对于有培养前途的穷学生他总是解囊相助。著名的物理学家严济慈,因得到熊庆来资助才得以出国深造。为资助严济慈,当自己经济拮据时,熊庆来不惜让夫人当去自己御寒的皮大衣。华罗庚青年时代,因家贫念完初中就无力继续上学,熊庆来在看了他发表的论苏子驹教授的五次方程之解不能成立论文之后,发现华罗庚是一个数学人才,立即把他请到清华大学,安排在数学系图书馆任助理员,破格任助教工作,后直接升为教授,并前往英国
17、留学,终于把他造就成国际知名的大数学家。熊庆来既是千里马又是伯乐,除自己在数学研究领域内攀登上科学高峰之外,还着意提携后进,让后者站在自己的肩膀上攀上另一个数学高峰,为我国数学界创建了一种识才、爱才、育才的优良传统,他的慧眼卓识是我国科学家的典范。1937 年抗日战争爆发,在缪云台、龚自知、方国瑜等人的推荐下,熊庆来接受云南省主席龙云的聘请,出任云南大学校长,为云大的发展作出了巨大贡献。当时的云大,只有 3 个学院,39 个教授,8 个讲师,302 个学生,教学设备简陋,教学质量不高。熊庆来利用抗战初期各方人才大量涌入昆明的机会,广延人才,延聘了全国著名教授吴文藻、顾领刚、白寿彝、楚图南、费孝
18、通、吴暗、赵忠尧、刘文典、张奚若、方国瑜等 187 名专任教授和 40 名兼任教授,还延聘了一些外国教授,使云大成为与西南联大同享盛名的又一处著名专家学者荟萃之地,教学质量因此跃入全国名牌大学之列,被吸收进大英百科全书之中;他把云大扩充成 5 个学院,18 个系,3个专修科,1 个先修班的多学院、多学科的综合大学,学生人数达1100 多人,1939 年又创办了云大附中;他还不断充实图。书教学设备,使图书馆藏书达十余万册,理科各系都有比较完善的实验室和标本资料室,医学院拥有附属医院及解剖室,农学院有实验农场,数学系在东郊凤凰山建立了天文台,工学院有实习工厂,航空系有飞机 3 架,这在全国高校中是
19、罕有的;他亲自作了云南大学校歌 ,制定了“诚、正、敏、毅”的校训,要求每一个学生都要诚实、正直、聪敏又有坚毅的学习精神。在熊庆来任校长的 12 年里,云大各项工作井然有序,日新月异,被认为是云南大学历史上的第一个“黄金时代” 。华人数学家陈省身 【陈示性类】数学家陈省身关于示性类的研究成果被国际上称为“陈示性类” 。陈省身 1911 年 10 月 26 日生于中国浙江嘉兴,1926 年入天津南开大学数学系,先后受教于姜立夫与孙鎕,由他们引导至微分几何这一领域。1934 年赴汉堡就学于当时德国几何学权威 W.J.E.布拉施克,1936 年完成博士论文后,赴法国跟从当代微分几何学家 E.嘉当继续深
20、造。1937 年回国,正值抗日战争,他任教长沙临时大学和西南联合大学,在此期间,他把积分几何理论推广到齐性空间。1943-1945年在普林斯顿高等研究所工作两年,先后完成了两项划时代的重要工作,其一为黎曼流形的高斯博内一般公式,另一为埃尔米特流形的示性类论。在这两篇论文中,他首创应用纤维丛概念于微分几何的研究,引进了后来通称的陈示性类,為大范围微分几何提供了不可缺少的工具,成为整个现代数学中的重要构成部份。陈省身的其他数学工作范围极为广泛,影响亦深。陈省身于 1946 年第二次世界大战结束后重返中国,在上海建立了中央研究院数学研究所(后迁南京),此后两三年中,他培养了一批青年拓扑学家。1949
21、 年他再去美国,先后在芝加哥大学与伯克利加州大学任终身教授。1981 年在伯克利的以纯粹数学为主的数学科学研究所任第一任所长。1985 年创办南开数学研究所,并任所长。陈省身由于对数学的重要贡献而享有多种荣誉,其中有 1984 年获颁的沃尔夫奖(WolfPrize,Link)。给他教过的学生,计有吴文俊、杨振宁、廖山涛、丘成桐、郑绍远等著名学者。华人数学家周炜良 【周氏坐标】数学家周炜良在代数几何学方面的研究成果被国际数学界称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环” 。周炜良 1911 年 10 月 1 日生于上海.代数几何.周炜良的父亲周达(美权)是清末民初著名数学家、集邮家
22、,家境比较富裕.周炜良幼年在上海生长,从未进过学校.5 岁开始学中文,11 岁学英文,都由家庭教师讲授.20 年代上海的大中学校颇多使用美国的原文课本,周炜良即自学各种知识:从数学到物理,从历史到经济.1924 年,周炜良恳求父亲送他到美国读书,先在肯塔基州的阿斯伯里学院补习,后来进入肯塔基大学.那时的主要兴趣在政治经济.直到 1929 年 10 月进入芝加哥大学时,仍然主修经济学.可是此后两年内发生了变化.1931 年夏天,一位在芝加哥大学得到博士学位后又去普林斯顿工作一年的中国数学家,劝周炜良到普林斯顿去,或者去德国的格丁根大学那时的世界数学中心.于是在 1932 年 10 月,周炜良带着
23、研究数学的模糊想法去了格丁根.补了半年的德文后,希特勒法西斯上台,格丁根衰落了.周炜良在芝加哥时曾读过 B.L.范德瓦尔登(VanderWaerden)写的代数学(Algebra),十分欣赏,于是转到莱比锡大学随范德瓦尔登研究代数几何,这是 1933 年夏天的事.次年夏天,周炜良到汉堡渡暑假,遇到维克特(MargotVictor)小姐,成为好友.周炜良滞留汉堡大学,随数学家 E.阿丁(Artin)听课.直至 1936 年初才回到莱比锡,在范德瓦尔登指导下完成博士论文,并和维克特完婚.婚礼上,正在汉堡大学留学的陈省身是唯一的中国宾客.周炜良成家立业之后,遂返回上海,在南京的中央大学任数学教授.一
24、年后,抗日战争爆发,不得已留在上海.周炜良的岳父在德国曾有很好的工作,由于希特勒的种族迫害而流亡上海,几乎身无分文.这时的周炜良必须自立挣钱,供养太太、两个孩子,以及岳父母.抗日战争胜利后,周炜良计划经营进出口贸易.大约在 1946 年春天,陈省身从美国返回上海.他力劝周炜良重返数学研究,并留下许多战时发表的论文,特别是 O.扎里斯基(Zariski)和 A.韦伊(Weil)的论文预引本.周炜良虽然离开数学已近 10 年之久,但他终于作出了他一生中最重要的决定:回到数学领域.由于陈省身写信给普林斯顿的 S.莱夫谢茨(Lefschetz)作了推荐,周炜良在上海同济大学短期任教之后,便于 1947
25、 年春天到达普林斯顿.他在那里做了一些相当好的工作.次年,范德瓦尔登访问位于美国马里兰州的约翰霍普金斯大学,周炜良去看他,恰好该校有一个教职的空缺,周炜良遂应聘到那里就任副教授.1950 年升任正教授.当年,战后首次恢复的国际数学家大会在美国举行,周炜良作为该校的正式代表与会,会后曾在哈佛大学短期讲学.1955年再度去普林斯顿进行访问研究,返回霍普金斯大学之后就任数学系主任,前后达 11 年之久(19551966).1959 年,他当选为台北中央研究院院士.1977 年,周炜良退休,成为霍普金斯大学的荣退教授.周炜良把毕生精力奉献给代数几何的研究,成为 20 世纪代数几何学领域的主要人物之一,
26、以周炜良名字命名的数学名词,仅在日本岩波数学词典里就收有 7 个.回顾 20 世纪中国数学的历史,能在世界数坛上留下痕迹的华人数学家并不多,周炜良是其中杰出的一位.代数几何学是解析几何的深入和发展.正如二元二次代数方程。x2+y2=r2 的解集(x,y)可以表示半径为 r 的圆,代数几何的研究对象仍是高次多元代数方程或代数方程组的解集,即系数在某域 k 内的 n 元多项式 F1,F2,Fn 所形成的代数方程组 F1(x1,xn)=0,F2(x1,xn)=0,Fn(x1,xn)=0 的位于域 k 内的公共解集合 V,我们称之为代数簇(algebraicvariety),最简单的代数簇就是平面曲线
27、.椭圆函数、椭圆积分、阿贝尔(Abel)积分等都与平面曲线有关,复变量的代数函数论及黎曼曲面论进一步推动了现代代数几何学的发展.19 世纪下半叶,德国的 R.克莱布施(Clebsch)、J.普吕克(Plcker)、M.诺特(Noether)以及意大利学派曾做出很大贡献.经过J.H.庞加莱(Poincar)、C.E.皮卡(Picard)、J.W.R.戴德金(Dedekind)和 A.凯莱(Cayley)的发展,到 20 世纪 2030 年代,E.诺特(Noether)、E.阿廷(Artin)和他们的学生范德瓦尔登创立了抽象代数学,为代数几何学的研究注入了新的活力.周炜良的代数几何学研究正是在这样
28、的背景下开始的.周炜良坐标1937 年,周炜良最初的两篇论文发表在德国数学年刊(MathematischeAnnalen)上.第一篇是与范德瓦尔登合作的,第二篇则是周炜良的博士论文.这两篇文章继承了凯莱和普吕克的工作,并将其推广到 n 维射影空间 Pn 上的代数簇.其中指出,任何 n 维射影空间 Pn 中的不可约射影族 X 可唯一地由一个配型(associatedform)Fx 所决定,配型的坐标即著名的周炜良坐标.该坐标是普吕克坐标的推广,现已成为代数几何学研究的一项基本工具.抗日战争开始后,周炜良在上海闲居,继续研究数学.1939 年,他发表了一篇重要论文“关于一阶线性偏微分方程组” ,将
29、 C.卡拉西奥多里(Carathodory)的一项工作(1909)推广到一般的高维流形.当时并未引起人们注意,事隔 30 余年之后,这篇文章成为非线性连续时间系统可控性数学理论的基石之一.控制论表达的周炜良定理(或称卡拉西奥多里-周定理)可以写成:设 V(M)是解析流形 M 上所有解析向量场的全体,D 是 V(M)中对称子集,T(D)是 V(M)中含 D 的最小子代数,I(D,x)是通过 x 的极大积分流形.那么,对任何 xM,yI(D,x),都存在一条积分曲线 :0,TM,T0,使得 (0)=x,且 (T)=y.抗日战争后期,周炜良曾有论文涉及代数基本定理的拓扑证明和电网络理论等,似乎已偏离
30、了代数几何学的方向.信息断绝和乏人讨论,恐是主要原因.周炜良于 1947 年到达普林斯顿高级研究院,开始了他的黄金创作期.他首先撰文阐明,E.嘉当(Cartan)意义下的对称齐次空间可以表示为代数簇,因而能用代数几何的框架研究其几何学性质.该文所附文献中包括华罗庚的有关矩阵几何学的论文多篇.19471948 年间,法国数学家 C.谢瓦莱(Chevalley)也在普林斯顿,他对周炜良的这篇论文做了很长的评论性摘要,发表于美国的数学评论(MathematicalReview).谢瓦莱曾邀请周炜良证明下列猜想:“任何代数曲线,在一个代数系统中的亏数,不会大于该系统中一般曲线的亏数”.周炜良使用纯代数
31、的方法给出了证明,其主要工具之一仍然是范德瓦尔登-周炜良形式.关于解析簇的周炜良定理周炜良于 1949 年发表了一篇重要论文“关于紧复解析簇”.所谓解析簇 V,是指对任何 pV,总存在一组解析函数g1,g2,gn,和点 p 的一个邻域 B(p),使得 VB(p)中的点 x都是 g1,g2,gn 的零点.这是一种局部性质.由于多项式都是解析函数,所以代数簇都是解析簇.周炜良证明了某些情形下的逆命题:“若 V 是 n 维复射影空间 CPn 中的闭解析子簇,那么它一定是代数簇,而且所有闭解析子簇间的半纯映射,一定是有理映射”.这一反映由局部性质向整体性质过渡的深刻结论,被称为周炜良定理(ChowTh
32、eorem),在代数几何学著作中广受重视.在许多论文里,常常把它作为新理论的出发点.复解析流形1950 年前后,复解析流形的研究形成热门课题.日本数学家小平邦彦(K.Kodaira)是这方面的专家,当时也在美国工作,与周炜良有交往.1952 年,周炜良证明了如下结果:“若 V 是复 r 维的紧复解析流形,F(V)是 V 上半纯函数所构成的域,则 F(V)是有限的代数函数域,其超越维数 s 不会大于 r.此外,还存在一 s 维的代数簇V以及 V 到 V的半纯变换 T,使 T 可诱导出 F(V)和 F(V)间的同构.特别地,如果可选择 V使得 T 还是双正则变换,那么 V 必是代数簇.这就把复解析
33、流形和代数簇联系起来了.把这个一般的结论用于二维的克勒(Khler)曲面,并用小平邦彦所建立的克勒流形上的黎曼-罗赫(Riemann-Roch)定理,就可以得出如下结论:“具有两个独立的半纯函数的克勒曲面(即 s=r=2 的情形)一定是代数曲面.”这是周炜良和小平邦彦合作的论文中的一个结论,被称为周-小平(Chow-Kodaira)定理.周炜良簇和周炜良环用周炜良坐标可以对平面曲线和空间曲线进行分类.只要由已知的次数 d 和亏数 g,从非奇异的空间射影曲线的周炜良坐标形成所谓周炜良簇,就能很自然地用有限个拟射影簇将它参数化.在射影簇研究上,另一个为人们称道的周炜良引理(ChowLemma),涉
34、及完全簇和射影簇的关系.苏联数学家 .沙法列维奇(aape)在其名著代数几何基础中曾提到这一引理:“对于每一个不可约的完全簇 X,总有一个射影簇 X,使得 X和 X之间有一双有理同构”.周炜良在射影簇方面最著名的工作是提出周炜良环(ChowRing).他于 1956 年发表的论文“关于代数簇上闭链的等价类”中,提出了射影代数簇上代数闭链的有理等价性的系统理论.大意是:设 V 是 n维射影空间 Pn 上的代数簇,其上的 s 维闭链所成的群为 G(V,s),与零链等价的闭链成子群 Gr(V,s).令 Hr(V,s)是二者的商群.将 s从 1 到 n 作直和,得 Hr(V)=Hr(V,s).周炜良在
35、 Hr(V)上定义一种乘法,使之构成环,这就是著名的周炜良环.它是结合的,交换的,具有单位元.这篇论文由 M.F.阿蒂亚(Atiyah)写成文摘刊于美国的数学评论.周炜良环具有很好的函子性质:设 p 是两代数簇 X,V 之间的模射,f:XV,则 V 中闭链 C 的原象 f-1(C)也是 X 中的闭链,且此运算与相截(intersection)和有理等价性能够相容.因此,它是代数几何研究中的一项重要工具.周炜良环在许多情形可以代替上同调环.在证明各种黎曼-罗赫定理时,常用周炜良环去导出陈省身类.著名的韦伊(Weil)猜想的解决,也可使用周炜良环.另一个常被引用的结论是所谓周炜良运动定理(Chow
36、sMo-vingLemma):若 Y,Z 是非奇异拟射影簇 X 中的两闭链,则必存在与Z 有理等价的闭链 Z,使 Y 和 Z具有相交性质(inte-rsectproperty).1970 年在奥斯陆举行的代数几何会议上,有专文论述此定理.关于阿贝尔簇的周炜良定理20 世纪 40 年代,A.韦伊(Weil)等开创了阿贝尔簇的研究.他们把代数曲线上的雅可比(Jacobi)簇发展为一般代数流形上的皮卡-阿尔巴内塞(Picard-Albanese)簇理论,将过去意大利学派的含糊结果加以澄清.周炜良对此作了丰富和发展,并推广到特征 p 域的情形.周炜良在文献10中证明对一般射影代数簇都存在雅可比簇.文献
37、11和12给出了阿贝尔簇的代数系统理论,其中有关可分(separable)、正则(regular)和本原扩张(pri-maryextention)的论述,已成为这一领域的基本文献.周炜良还证明了以下结论:“若 A 是域 k 上的阿贝尔簇,B 是定义在 k 的准素扩张 K 上的阿贝尔子簇,那么 B 也在 k 上有意义.”S.郎(Lang)称之为周炜良定理.周炜良在 1957 年发表的关于阿贝尔簇的论文也反复被人引用.这一年,普林斯顿大学以数学名家莱夫谢茨的名义举行“代数几何与拓扑”的科学讨论会,韦伊和周炜良都参加了.他们两人在会上宣读的论文密切相关.韦伊证明任何阿贝尔簇都可嵌入射影空间,而周炜良
38、则证明任何齐次簇(不必完备)也可嵌入射影空间.文章不长,但解决得很彻底.其他工作周炜良在代数几何领域的研究,涉及很广.例如扎里斯基关于抽象代数几何中的退化原理(degenerationprinciple)的论证,很长而且难懂,周炜良把证明作了大幅度压缩,并加以推广.他和井草准一(J.lgusa)合作,建立了环上代数簇的上同调理论.此外,还推广了代数几何中的连通性定理.在扩充由 W.V.霍奇(Hodge)与 D.佩多(Pedoe)证明的格拉斯曼(Grassm-ann)簇的基本定理时,指出了某些环空间上的代数特性.这些都是很有价值的工作.退休之后,周炜良仍然研究不辍.1986 年,他以 75 岁高
39、龄,发表了题为“齐次空间上的形式函数(formalfunction)”的论文.P.拉克斯(Lax)把周炜良列为最重要的移居美国的数学家之一.但他性情淡泊,甚至很少参加国际学术会议.他是台北中央研究院院士,却长期不参加活动.应该说,周炜良的学术成就远超过他应得的荣誉.不过,各种代数几何的论著不断地引用周炜良的工作,并以周炜良的名字陆续命名一系列术语,这也许是更有意义的褒奖了.华人数学家吴文俊 【吴氏方法】数学家吴文俊关于几何定理机器证明的方法被国际上誉为“吴氏方法” ;另外还有以他命名的“吴氏公式” 。吴文俊,中国人,1919 年 5 月 12 日生于上海。1940 年毕业于交通大学,1949
40、年在法国斯特拉斯堡大学获博士学位。1951 年回国,1957 年任中国科学院学部委员,1984 年当先为中国数学理事长。吴文俊在数学上作出了许多重大的贡献。拓扑学方面,在示性类、示嵌类等领域获得一系列成果,还得到了许多著名的公式,指出了这些理论和方法的广泛应用。他还在拓扑不变量、代数流形等问题上有创造性工作。1956 年吴文俊因在拓扑学中的示性类和示嵌类方面的卓越成就获中国自然科学奖一等获。机器证明方面,从初等几何着手,在计算机上证明了一类高难度的定理,同时也发现了一些新定理,进一步探讨了微分几何的定理证明。提出了利用机器证明与发现几何定理的新方法。这项工作为数学研究开辟了一个新的领域,将对数
41、学的革命产生深远的影响。1978 年获全国科学大会重大科技成果奖。中国数学史方面,吴文俊认为中国古代数学的特点是:从实际问题出发,经过分析提高,再抽象出一般的原理、原则和方法,最终达到解决一大类问题的目的。他对中国古代数学在数论、代数、几何等方面的成就也提出了精辟的见解华人数学家柯召 【柯氏定理】数学家柯召关于卡特兰问题的研究成果被国际数学界称为“柯氏定理” ;另外他与数学家孙琦在数论方面的研究成果被国际上称为“柯孙猜测” 。柯召(1910.4.122003.11.8),数学家。浙江温岭人。1933 年毕业于清华大学。1937 年获英国曼彻斯特大学博士学位。四川大学教授、校长、名誉校长。主要从
42、事代数学、数论、组合数学等方面的数学与研究工作并取得突出成就。在数论方面,在表二次型为线性型平方和的研究上取得一系列重要成果。在不定方程方面,解决了一百多年来未能解决的卡塔兰猜想的二次情形,并获一系列重要结果。在组合论方面,与他们合作得出了关于有限集组相交的一个著名定理即“定道什-柯-拉多定理” ,开辟了极值集论迅速发展的道路。在发展中国教育事业、培养大批科学人才方面做了大量卓有成效的工作。华人数学家陈景润 【陈氏定理】数学家陈景润在哥德巴赫猜想研究中提出的命题被国际数学界誉为“陈氏定理” 。陈景润(19331996),中国数学家、中国科学院院士。福建闽候人。陈景润出生在一个小职员的家庭,上有
43、哥姐、下有弟妹,排行第三。因为家里孩子多,父亲收入微薄,家庭生活非常拮据。因此,陈景润一出生便似乎成为父母的累赘,一个自认为是不受欢迎的人。上学后,由于瘦小体弱,常受人欺负。这种特殊的生活境况,把他塑造成了一个极为内向、不善言谈的人,加上对数学的痴恋,更使他养成了独来独往、独自闭门思考的习惯,因此竟被别人认为是一个“怪人”。陈景润毕生后选择研究数学这条异常艰辛的人生道路,与沈元教授有关。在他那里,陈景润第一次知道了哥德巴赫猜想,也就是从那里,陈景润第一刻起,他就立志去摘取那颗数学皇冠上的明珠。1953 年,他毕业于厦门大学,留校在图书馆工作,但始终没有忘记哥德巴赫猜想,他把数学论文寄给华罗庚教
44、授,华罗庚阅后非常赏识他的才华,把他调到中国科学院数学研究所当实习研究员,从此便有幸在华罗庚的指导下,向哥德巴赫猜想进军。1966 年 5 月,一颗耀眼的新星闪烁于全球数学界的上空-陈景润宣布证明了哥德巴赫猜想中的“1+2“;1972 年 2 月,他完成了对“1+2“证明的修改。令人难以置信的是,外国数学家在证明“1+3“时用了大型高速计算机,而陈景润却完全靠纸、笔和头颅。如果这令人费解的话,那么他单为简化“1+2“这一证明就用去的 6 麻袋稿纸,则足以说明问题了。1973 年,他发表的著名的“陈氏定理“,被誉为筛法的光辉顶点。对于陈景润的成就,一位著名的外国数学家曾敬佩和感慨地誉:他移动了群
45、山!华人数学家陈永川 【陈氏文法】数学家陈永川在组合数学方面的研究成果被国际上命名为“陈氏文法” 。陈永川教授,出生于 1964 年 3 月。现任南开大学副校长,南开数学研究所教授和博士生导师,教育部“核心数学与组合数学”重点实验室主任,并任美国洛斯阿拉莫斯国家实验室客座研究员,AdvancesinAppliedMathematics(应用数学进展)编委,GraphsandCombinatorics(图与组合)编委,AnnalsofCombinatorics(组合年刊)执行编委。陈永川教授还是第十届全国政协委员,天津市科协副主席,国家自然科学基金委员会评审委员。陈永川教授于 1984 年获四川
46、大学计算机软件学士学位,1987年赴美国麻省理工学院学习,1991 年获应用数学博士学位。同年被美国洛斯阿拉莫斯国家实验室授予奥本海默研究员奖。陈永川教授在这个实验室从事计算机研究及其应用方面的工作。所在的部门是ComputerResearchandApplicationsGroup。陈永川教授于 1994 年 4 月放弃在美国的固定工作和优厚的生活条件,回国到南开数学研究所任教授。他的回国在国内以及海外的留学生中引起了很大的反响,受到国家、天津市和南开大学的重视,各种新闻媒体争先报道。同年,获得美国李氏基金会的学术成就奖。95 年荣获首届国家杰出青年科学基金,受到李鹏总理的接见。96 年获得
47、国家教委科技进步一等奖,同年被评为天津市十大杰出青年。97 年获得联合国教科文组织“侯赛因”青年科学家奖,并受到了天津市委书记张立昌和国家教委主任朱开轩的接见。98 年获得国家教委霍英东奖,中国“五四”青年奖章,中国青年科技奖,并作为中国科研教育界的代表出席北戴河“科教兴国”座谈会,受到江泽民、李鹏、胡锦涛等党和国家领导人的接见。1996 年陈永川教授创办了国际数学杂志AnnalsofCombinatorics(组合年刊),并担任执行编委。此杂志与世界上最大的科技出版社,德国斯普林格出版社合作,在国际同行的通讯评议中被评为最高质量的刊物(topqualityjournal)。上届费尔兹(Fie
48、lds)奖获得者 Gowers 现已被聘为该刊物新一任的编委。这份刊物为中国组合数学界在世界领域内开创了一个重要的学术阵地。天津市政府、国家教委、国家自然科学基金委员会、天津市教委、天津市科委、南开大学以及国内外学术界的广泛支持下,1997年 11 月,陈永川创立了南开大学组合数学研究中心。他本着高起点、高水平、高速度的发展策略,在很短的时间内把“中心”办成了一个有国际影响的研究机构,每年都有国际著名学者来中心长期工作,直接参与中心的教学和科研工作,这里还凝聚了一批既有坚实的理论基础,又有实干精神的青年学者,学术气氛浓厚。该中心有希望成为有重要国际地位的组合数学研究基地。陈省身先生评价说“陈永
49、川的组合数学中心办得很先进,很成功” 。1998 年,李岚清副总理、国家教育部部长陈至立、国务院新闻办公室主任赵启正、天津市委书记张立昌、天津市市长李盛霖等领导都先后到组合中心来视察工作。陈永川从事的主要研究领域有组合计数理论、构造组合学、形式文法、对称函数理论、计算机互联网络、组合数学在数学物理中的应用等,并取得了许多重要的研究成果,他的一项研究成果被称为“陈氏文法“。陈永川先后在国际一流学术刊物上发表论文 40 余篇。他的科研成就和学术水平已经获得国际学术界的认可,同行认为他是“世界最领先的离散数学家之一“。1996 年陈永川在南开数学所成功的举办了组合数学学术年,1997 年和 1999 年又成功的举办了“组合复兴”大型国际会议。陈永川教授在积极开展个人的科研和教学工作同时,把建设中