1、第二十七节 函数模型及其应用(二)1某商场宣传在节假日对顾客购物实行一定的优惠,商场规定:如一次购物不超过 200 元,不予以折扣;如一次购物超过 200 元,但不超过 500 元,按标价予以九折优惠;如一次购物超过 500 元的,其中 500 元给予九折优惠,超过 500 元的给予八五折优惠某人两次去购物,分别付款 176 元和 432 元,如果他只去一次且购买同样的商品,那么应付款( )A 元 B 元 C 元 D 元608574.1582.6456.82某企业年初有资金 100 万元,若该企业经过有效经营能使每年资金平均增长 50,但每年年底要扣除消费基金 万元,余下的投入再生产,为实现
2、3 年后资金达 290 万元(扣除消费基金后) ,则 x x。3某不法商人将彩电按原价提高 40,然后在广告中写上“大酬宾,八折优惠” ,结果是每台彩电比原价多赚了 270 元,那么每台彩电原价是 元4某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比已知投资 1 万元时两类产品的收益分别为 0125 万元和 05 万元(如图) 。则稳健型产品的收益与投资的函数关系是 ,风险型产品的收益与投资额的函数关系是 。5如图是抛物线形状的拱桥,已知水位在 位置时,水面宽 m,水位上AB46升 3 m 就达到警戒线
3、CD,这时水面宽 m,若洪水到来时,水位以每小时43m 速度上升,求水过警戒线后几小时淹到拱桥顶 ?0.26某市原来民用电价为 元 ,换装分时电表后,峰时段( 早上八点到晚上九点)的电价为0.52kwh元 ,谷时段(晚上九点到次日早上八点) 的电价为 元 对于一个平均每月用0.5kwh 0.35kwh电量为 200 的家庭,要使节省的电费不少于原来电费的 ,则这个家庭每月在峰时段的平均1%用电量至多为多少 ?7按复利计算利息的一种储蓄,本金为 元,每期利率为 ,设本利之和为 ,存期为 ,写出本利之aryx和 随存期 变化的函数解析式如果存入本金 1 000 元,每期利率 225,试计算 5 期
4、后的本利之yx和是多少?8某公司生产一种产品的固定成本为 20 000 元,每生产一个产品增加投入 100 元,已知总收益满足函数,(其中 为产品的月产量) 。2140(40)()xxRx求每月生产多少个产品时公司的利润最大?最大利润是多少(总收益总成本+利润)?9某种商品在 30 天内每件的销售价格 (元件) 与时间 (天) 的Pt函数关系用图甲表示,该商品在 30 天内日销售量 (件)与时Q间 (天)之间的关系如表乙表示t(图甲) (表乙)(1)根据提供的图象,写出该商品每件的销售价格 与时间 的函数关系式;Pt(2)根据表中提供的数据,在所给直角坐标系中,描出实数对 的对应点,并确定一个日销售量 与(,)QQ时间 的函数关系式;t(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是 30 天中的第几天?(日销售金额每件的销售价格 日销售量) 5 10 15 20 25 30 35 40403530252015105 tO