收藏 分享(赏)

应用多元统计分析 北大版 第六章.ppt

上传人:dwy79026 文档编号:6592024 上传时间:2019-04-18 格式:PPT 页数:128 大小:1.39MB
下载 相关 举报
应用多元统计分析 北大版 第六章.ppt_第1页
第1页 / 共128页
应用多元统计分析 北大版 第六章.ppt_第2页
第2页 / 共128页
应用多元统计分析 北大版 第六章.ppt_第3页
第3页 / 共128页
应用多元统计分析 北大版 第六章.ppt_第4页
第4页 / 共128页
应用多元统计分析 北大版 第六章.ppt_第5页
第5页 / 共128页
点击查看更多>>
资源描述

1、1,应用多元统计分析,第六章 聚类分析,2,第六章 聚类分析 目 录,6.1 聚类分析的方法 6.2 距离与相似系数 6.3 系统聚类法 6.4 系统聚类法的性质及类的确定6.5 动态聚类法 6.6 有序样品聚类法(最优分割法) 6.7 变量聚类方法 补充:CLUSTER过程简介,3,第六章 6.1 聚类分析的方法 什么是聚类分析,聚类分析又称群分析,它是研究对样品或指标进行分类的一种多元统计方法.所谓的“类”,通俗地说就是相似元素的集合.聚类分析是按照观测样品(或变量)取值的相似程度,对观测样品(或变量)进行分类,使在同一类内的观测样品(或变量)是相似的,不同类间的观测(或变量)是不相似的.

2、什么是分类?它只不过是将一个观测对象指定到某一类(组).,4,第六章 6.1 聚类分析的方法 什么是聚类分析,分类的问题可以分成两种:一种是对当前所研究的问题已知它的类别数目,且知道各类的特征(如分布规律,或知道来自各类的训练样本),我们的目的是要将另一些未知类别的个体正确归属于其中某一类,这是第五章判别分析所要解决的问题.另一种是事先不知道研究的问题应分为几类,更不知道观测到的个体的具体分类情况,我们的目的正是需要通过对观测数据所进行的分析处理,选定一种度量个体接近程度的量,确定分类数目,建立一种分类方法,并按亲近程度对观测对象给出合理的分类.这种问题在实际中大量存在,它正是聚类分析所要解决

3、的问题.,5,第六章 6.1 聚类分析的方法 什么是聚类分析,聚类分析是实用多元统计分析的一个新的分支,正处于发展阶段,理论上虽不很完善,但由于它能够解决许多实际问题,因此这个方法很受人们的重视,特别是和其他方法联合起来使用往往效果更好.例如对一批观测对象先用聚类分析进行分类,然后用判别分析的方法建立判别准则,用以对新的观测对象判别归类.,6,第六章6.1 聚类分析的方法,聚类分析的方法可分为以下几种:(1) 系统聚类法:开始每个对象自成一类,然后每次将最相似的两类合并,合并后重新计算新类与其他类的距离或相近性测度.这一过程一直继续直到所有对象归为一类为止. 并类的过程可用一张谱系聚类图描述.

4、(2) 调优法(动态聚类法) ;(3) 最优分割法(有序样品聚类法) ;(4) 模糊聚类法 ;(5) 图论聚类法 ; (6) 聚类预报法 .,7,第六章6.1 聚类分析的方法 聚类分析的类型及目的,聚类分析根据分类对象的不同分为R型和Q型两大类,R型是对变量(指标)进行分类处理,Q型是对样品进行分类处理.R型聚类分析的目的有以下方面: 了解变量间及变量组合间的亲疏关系; 对变量进行分类; 根据分类结果及它们之间的关系,在每一类中选择有代表性的变量作为典型变量,利用少数几个典型变量进一步作分析计算,如进行回归分析或Q型聚类分析等.,8,第六章6.1 聚类分析的方法Q型聚类分析的目的,Q型聚类分析

5、的目的主要是对样品进行分类.分类的结果是直观的,且比传统分类方法更细致、全面、合理.当然使用不同的分类方法通常会得到不同的分类结果.对任何观测数据都没有唯一“正确的”的分类方法.实际应用中,常采用不同的分类方法,对数据进行分析计算,以便对分类提供意见,并由实际工作者决定所需要的分类数及分类情况.本章重点介绍应用最广泛的系统聚类法;且主要讨论Q型聚类分析问题.,9,第六章6.2 距离与相似系数,为了对观测样品(或变量)进行分类,就必须研究它们之间的关系.描述样品之间亲疏相似程度的统计量很多,目前用得最多的是距离和相似系数,这两个统计量的定义与变量的类型密切相关,我们首先介绍变量的类型.,10,第

6、六章6.2 距离与相似系数 定量变量和定性(属性)变量,定量变量就是我们通常所说的连续变量,例如长度、重量、产量、人口、温度等,它们是由测量或计数、统计所得到的量, 这类变量具有数值特征,称为定量变量.,根据变量取值的不同,变量可分为两大类:定量变量和定性(属性)变量.,11,第六章6.2 距离与相似系数 定量变量和定性(属性)变量,定性(属性)变量只有性质上的差异,例如天气(阴、晴),性别(男、女),产品质量分为 上 中 下三个等级. 这些变量都是 属性(定性)变量.属性变量又分为名义变量和有序变量二种:(1)有序变量:其值有明确的逻辑次序,但各个值之间的距离并不清楚.(2) 名义变量:其值

7、之间无逻辑次序,可按任何次序排序编码.例如性别,职业,地区,都是名义变量.不同类型的变量在定义距离或相似性测度时有很大差异.,12,第六章6.2 距离与相似系数 数据的变换方法,设有n个样品,每个样品测得m项指标(变量),得观测数据xij(i=1,n,j=1,m).通常将数据列成以下表格的形式.,13,第六章6.2 距离与相似系数 数据的变换方法,1. 中心化变换变换后数据的均值为0,而协差阵不变.2. 标准化变换变换后的数据,每个变量的样本均值为0,标准差为1,而且标准化变换后的数据x*ij与变量的量纲无关.3. 极差标准化变换变换后的数据,每个变量的样本均值为0,极差为1,变换后的数据也是

8、无量纲的量.,14,第六章6.2 距离与相似系数 数据的变换方法,4. 极差正规化变换(规格化变换)变换后的数据0 x*ij 1;极差为1,也是无量纲的量.5. 对数变换它可将具有指数特征的数据结构化为线性数据结构.,15,第六章6.2 距离与相似系数 样品间的距离,描述样品间的亲疏程度最常用的是距离.n个样品看成m维空间中的n个点,用dij表示样品X(i)和X(j) 之间的距离,一般要求: dij 0,对一切i,j ;当dij =0 X(i) = X(j) ; dij = dji ,对一切i,j; dij dik+ dkj,对一切i,j,k(三角不等式).,X(k),X(i),X(j),16

9、,第六章6.2 距离与相似系数 样品间的距离,1. 闵科夫斯基(Minkowski)距离当q=1时的一阶Minkowski度量就称为绝对值距离.,17,第六章6.2 距离与相似系数 样品间的距离,当q=时的Minkowski度量称为切比雪夫距离 . ,当q=2时的二阶Minkowski度量称为欧氏距离.欧氏距离是聚类分析中用得最广泛的距离.,18,第六章6.2 距离与相似系数 样品间的距离,缺点:(1) 与各变量的量纲有关;(2) 没有考虑指标间的相关性;(3) 没有考虑各变量方差的不同.如欧氏距离,变差大的变量在距离中的作用(贡献)就会大,这是不合适的.合理的方法就是对各变量加权,如用1/s

10、2 作为权数可得出“统计距离”:,19,第六章6.2 距离与相似系数 样品间的距离,对n个样品计算两两间的距离dij后,可排成矩阵D,d11 d12 . d1nd21 d22 . d2n D = .dn1 dn2 . dnn,nn,dij 值越小,表示两个样品越接近, dij值越大,表示两个样品越不相近.,20,第六章6.2 距离与相似系数 样品间的距离,2. 兰氏距离(要求xij0)这是由Lance和Williams最早提出的,故称为兰氏距离.这是一个无量纲的量.克服了闵氏距离与各指标的量纲有关的缺点.且兰氏距离对大的奇异值不敏感,这样使得它特别适合高度偏倚的数据. 但兰氏距离也没有考虑变量

11、间的相关性.,21,第六章6.2 距离与相似系数 样品间的距离,3. 马氏距离(Mahalanobis),马氏距离既排除了变量间相关性的干扰,而且还不受各项指标量纲的影响.另马氏对线性变换具有不变性.,22,第六章6.2 距离与相似系数 样品间的距离,马氏距离虽然可以排除变量之间相关性的干扰,并且不受量纲的影响,但是在聚类分析处理之前,如果用全部数据计算均值和协差阵来求马氏距离,效果不是很好.比较合理的办法是用各个类的样本来计算各自的协差阵,同一类样品间的马氏距离应当用这一类的协差阵来计算,但类的形成都要依赖于样品间的距离,而样品间合理的马氏距离又依赖于类,这就形成了一个恶性循环,因此在实际聚

12、类分析中,马氏距离也不是理想的距离.,23,第六章6.2 距离与相似系数 样品间的距离和相似系数,4. 斜交空间距离 在m维空间中,为使具有相关性变量的谱系结构不发生变形,采用斜交空间距离,即,在数据标准化处理下,rkl为变量Xk和Xl之间的相关系数5. 相似系数样品间的亲疏程度除了用距离描述外,也可用相似系数来表示.参见以下“变量间的相似系数”的定义.,24,第六章 6.2 距离与相似系数 定性变量样品间的距离或相似系数,6.定性变量样品间的距离或相似系数下面来介绍定性变量(名义变量或有序变量)的距离或相似系数的定义方法.在数量化理论中,常把定性变量叫做项目,而把定性变量的各种不同取“值“叫

13、做类目.例如性别是项目,而男或女是这个项目的类目;体形也是一个项目,而适中、胖、瘦、壮等是 这个项目的类目.性别只能取男或女中一类,不能兼取;而体形可以是适中且壮,即兼取两类.,25,第六章 6.2 距离与相似系数 定性变量样品间的距离或相似系数,设样品X(i)的第k个项目( k=1,2,m)的取值为 (i (k,1),i (k,2),i (k,rk) ) (i=1,2,n), 其中n为样品的个数,m为项目的个数,rk是第k个项目的类目数.,并称i (k,l) 为第k项目之l类目在第i个样品中的反应 .,26,第六章 6.2 距离与相似系数 定性变量样品间的距离或相似系数,设两个样品为X(i)

14、和X(j),若i (k,l)=j (k,l) =1,则称这两个样品在第k个项目的第l类目上1-1配对;若i (k,l)=j (k,l) =0,则称这两个样品在第k个项目之l类目上0-0配对;若i (k,l) j (k,l) ,则称为不配对.,27,第六章 6.2 距离与相似系数 定性变量样品间的距离或相似系数,记m1为X(i)和X(j)在m个项目的所有类目中1-1配对的总数;m0为0-0配对的总数;m2为不配对总数.显然m0+ m1+ m2=总类目数p(p=r1 +r2+rm).表6.2给出两个样品的取“值”情况.显然m1 =3, m0=7, m2=4.项目数m=4,总类目数p=14.,28,

15、第六章 6.2 距离与相似系数定性变量样品间的距离或相似系数,(1) 两个样品为X(i)和X(j)间的距离定义为,即不配对的类目数在有反应的类目(包括 1-1配对和不配对)数中的比例.比如 表6.2, dij=4/7.,29,第六章 6.2 距离与相似系数 定性变量样品间的距离或相似系数,当项目只能取可能类目中的一类,不能兼取的情况下,两样品的距离定义为:,其中m*2是不配对的项目(变量)个数;m表示项目总个数.,类似于欧氏距离,还可以定义不配对的总数:,30,第六章 6.2 距离与相似系数 定性变量样品间的距离或相似系数,(2) 样品X(i)和X(j)间的相似性度量由表6.3给出几种定义方法

16、.这种相似性度量也称为匹配系数,31,第六章 6.2 距离与相似系数 定性变量样品间的距离或相似系数,(p+m2=2m2+m1+m0),32,第六章6.2 距离与相似系数 变量间的相似系数和距离,在对变量进行分类时,通常采用相似系数来表示变量之间的亲疏程度.设Cij表示变量Xi和Xj间的相似系数,一般要求 Cij =1 Xi =a Xj (a0,常数); | Cij |1,对一切i,j成立; Cij = Cji ,对一切i,j成立. | Cij |越接近1,则表示Xi 和Xj 的关系越密切, |Cij| 越接近0,两者关系越疏远.,33,第六章6.2 距离与相似系数 变量间的相似系数和距离,1

17、. 夹角余弦变量Xi的n次观测值(x1i,x2i,xni)看成n维空间的向量. Xi 和Xj 夹角ij的余弦称为两向量的相似系数,记为Cij(1),即当i=j时,夹角ij =0, Cij(1)=1,说明两向量完全相似;当Xi 和Xj正交时, ij=90, Cij(1)=0,说明两变量不相关.,34,第六章6.2 距离与相似系数 变量间的相似系数和距离,2. 相关系数相关系数就是对数据作中心化或标准化处理后的夹角余弦.变量Xi 和Xj的相关系数常用rij表示,在这里我们记为Cij(2),即,当i=j时, Cij(2)=1表示两变量线性相关 . 一般情况,| Cij(2)|1.,35,第六章6.2

18、 距离与相似系数 变量间的相似系数和距离,3. 变量间的距离(1) 利用相似系数来定义变量间的距离 令 dij=1-|Cij| 或 d2ij=1-C2ij (i,j=1,2,m).(2) 利用样本协差阵来定义距离设样本协差阵S=(sij) 0,变量Xi和Xj 间的距离可定义为dij= sii + sjj - 2 sij(3) 把变量Xi的n次观测值看成n维空间的点.在n维空间中按“样品间的距离和相似系数”中介绍的方法类似可定义m个变量间的种种距离.,36,第六章 6.2 距离与相似系数 定性变量间的相似系数,4.定性变量间的相似系数当变量Xi是定性变量时,也可以定义多种相似系数.设变量Xi的p

19、种取值记为r1, r2,rp(或称项目Xi有p个类目); Xj的q种取值记为t1,t2,tq .n个样品中两个定性变量的实际观察数列成表6.4,其中nkl表示在n个样品中Xi取rk且Xj取tl的频数.通常称表6.4为列联表.,37,第六章 6.2 距离与相似系数 定性变量间的相似系数,38,第六章 6.2 距离与相似系数 定性变量间的相似系数,利用列联表对两定性变量独立性的检验中常用到的统计量,建立在卡方统计量基础上的相似系数有(1) 联列系数,39,第六章 6.2 距离与相似系数 定性变量间的相似系数,(2)连关系数(有三种),40,第六章 6.2 距离与相似系数 定性变量间的相似系数,如果

20、Xi和Xj只取二个值(不妨记为0或1),则列联表化为:,这时常用的相似系数有(3) 点相关系数,(习题6-2),(6.2.2),41,第六章 6.2 距离与相似系数 定性变量间的相似系数,点相关系数是与定量变量的相关系数相对应的统计量。(4) 四分相关系数,(5) 夹角余弦,(习题6-2),(6.2.3),42,第六章 6.2 距离与相似系数 定性变量间的相似系数,考虑到Cij= Cji ,改进的统计量为,43,第六章 6.3 系统聚类方法 Hierachical Clustering Method,聚类所需的数据可以是通常的多变量的观测记录,也可以是描述样品间或变量间亲近(proximity

21、)程度的一个矩阵.如用相关系数描述相似程度或用距离描述不相关程度。根据亲近程度进行聚类有多种方法,常用的方法是系统聚类方法(Hierachical Clustering Method).他将n个样品各自看成一类,然后选择距离最近(或最相似)的一对合并成一个新类.再将距离最近的两类合并成一个新的类.每一步减少一个类,直至所有样品都成为一个类为止.,44,第六章 6.3 系统聚类方法 系统聚类法的基本思想和基本步骤,设有n个样品,每个样品测得m项指标.首先定义样品间的距离(或相似系数)和类与类之间的距离.系统聚类方法的基本思想是:一开始将n个样品各自自成一类,这时类间的距离与样品间的距离是等价的;

22、然后将距离最近的两类合并,并计算新类与其他类的类间距离,再按最小距离并类.这样每次缩小一类,直到所有的样品都成一类为止.这个并类过程可以用谱系聚类图形象地表达出来.,45,第六章 6.3 系统聚类方法 系统聚类法的基本思想和基本步骤,系统聚类法的基本步骤如下:数据变换:可以使用上节介绍的方法对数据进行变换.数据变换目的是为了便于比较、计算上的方便或改变数据的结构.选择度量样品间距离的定义(如欧氏距离)及度量类间距离的定义(如最短距离法,见下面“系统聚类分析的方法”中的介绍). 计算n个样品(个体)两两间的距离,得初始的距离矩阵D(1) .,0,46,第六章 6.3 系统聚类方法 系统聚类法的基

23、本思想和基本步骤, 一开始(第一步:i=1)n个样品各自构成一类,得类的个数k=n个类:Gt=X(t) (t=1,n).此时类间的距离就是样品间的距离.对步骤i=2,n执行并类过程的步骤和 .步骤i得到的D(i-1) ,每次合并类间距离最小的两类为一新类.此时类的总个数k减少1类,即k=n-i+1. 计算新类与其他类的距离,得新的距离矩阵D(i) .若此时类的总个数k大于1类,重复和步;直到类的总个数为1时止.,47,第六章 6.3 系统聚类方法 系统聚类法的基本思想和基本步骤, 画谱系聚类图; 决定分类的个数及各类的成员.,当临界值d=2.01 应分为两类,当临界值d=1.51 应分为三类,

24、当临界值d=1.01 应分为四类,48,第六章 6.3 系统聚类方法 应用简例,例6.3.1 设有5个产品,每个产品测得一项质量指标X,其值如下:1, 2, 4.5, 6, 8 .试对5个产品按质量指标进行分类.解 设样品间的距离取为欧氏距离,类间的距离取为类间的最短距离.根据上面介绍的步骤,计算如下: 计算5个样品X(1) , X(2) , X(3) , X(4) , X(5) 两两间的距离,得初始的类间距离矩阵D(1) :,49,第六章 6.3 系统聚类方法 应用简例, 一开始n个样品各自构成一类,得5个类:Gi=X(i) (i=1,5),类的个数k=5.,= D(1),1,2,4.5,6

25、,8,50,第六章 6.3 系统聚类方法 应用简例, 由D(1)可知距离为1时最小,首先合并X(1) 和X(2) 为一新类,记为CL4=X(1) , X(2);此时类的总个数k减少1类,变为k=4,故把此步得到的新类记为CL4. 按最短距离法计算新类CL4与其他类的距离,得新的距离矩阵D(2). ,51,第六章 6.3 系统聚类方法 应用简例,因此时类的总个数k=4大于1类,重复并类过程.,= D(2),1,2,4.5,6,8,CL4,52,第六章 6.3 系统聚类方法 应用简例, 由D(2)可知距离为1.5时最小,故合并X(3)和X(4)为一新类,记为CL3=X(3) , X(4) ;此时类

26、的总个数k减少1类,变为k=3,故把此步得到的新类记为CL3. 按最短距离法计算新类CL3与其他类的距离,得新的距离矩阵D(3).,= D(3),53,第六章 6.3 系统聚类方法 应用简例,因此时类的总个数k=3大于1类,重复并类过程. 由D(3)可知,应合并X(5) 和CL3为一新类,记为CL2=X(5),X(3),X(4);此时类的总个数k减少1类,变为k=2,故把此步得到的新类为CL2. 按最短距离法计算新类CL2与其他类的距离,得新的距离矩阵D(4) .,= D(4),54,第六章 6.3 系统聚类方法 应用简例,因此时类的总个数k=2大于1类,重复并类过程. 由D(4)可知,最后应

27、合并CL4和CL2为一新类,记为CL1=X(1) , X(2) , X(3) , X(4) , X(5) ;此时类的总个数k=1,故把此步得到的新类为CL1. 此时所有样品全并成一类,得新的距离矩阵D(5) .,= D(5),55,第六章 6.3 系统聚类方法 应用简例,根据并类过程绘制的谱系聚类图,56,第六章 6.3 系统聚类方法 应用简例,1,8,2,4.5,6,并类的直观过程,X(1),X(2),X(3),X(4),X(5),57,第六章 6.3 系统聚类方法 应用简例,根据谱系聚类图可得到分类的结果:若分为两类,则分为:X(1), X(2) 和X(5), X(3), X(4) 若分为

28、三类,则分为 :X(1), X(2) , X(5) 和X(3), X(4);若分为四类,则分为:X(1) , X(2) ,X(5) 和X(3)和 X(4);若分为五类,则分为 :X(1) ,X(2) ,X(3) ,X(4)和 X(5).,58,第六章 6.3 系统聚类方法 系统聚类分析的方法,系统聚类法的聚类原则决定于样品间的距离(或相似系数)及类间距离的定义,类间距离的不同定义就产生了不同的系统聚类分析方法.,几个记号:用dij表示样品X(i)和X(j)之间的距离,当样品间的亲疏关系采用相似系数Cij 时,令 dij=1-|Cij| (或 d2ij=1-C2ij);用Dij表示类Gi和Gj间

29、的距离.,59,第六章 6.3 系统聚类方法 系统聚类分析的方法-最短距离法,1. 最短距离法(SINgle linkage)类与类之间的距离定义为两类中最近样品之间的距离,即类Gp和Gq之间的距离Dpq定义为,比如:当G1=1,2,G2=4.5,6时,D12=4.5-2=2.5 (即最近两样品x(2)=2和x(3)=4.5之间的距离),60,第六章 6.3 系统聚类方法 系统聚类分析的方法- -最短距离法,例6.3.1中类间距离就是使用最短距离法定义的.,当某步类Gp和Gq合并为Gr后,按最短距离法计算 新类Gr与其他类Gk的类间距离,递推公式为,61,第六章 6.3 系统聚类方法 系统聚类

30、分析的方法- -最短距离法,如第一步类G1和G2合并为Gr(记为CL4)后,按最短距离法计算新类Gr与其他类Gk(k=3,4,5)的类间距离,按递推公式计算:,由,可得,62,第六章 6.3 系统聚类方法 系统聚类分析的方法-最长距离法,2. 最长距离法(COMplete method)类与类之间的距离定义为两类中最远样品之间的距离,即类Gp和Gq之间的距离Dpq定义为,类Gp和Gq合并为Gr后,按最长距离法计算新类Gr与其他类Gk的类间距离也有类似的递推公式:,比如:当G1=1,2,G2=4.5,6时,D12=6-1=5 .,63,第六章 6.3 系统聚类方法 系统聚类分析的方法-中间距离法

31、,3. 中间距离法(MEDian method)如果类与类之间的距离既不采用两类间的最近距离,也不采用最远的距离,而是采用介于两者间的距离,这种方法称为中间距离法.,Gq,Gr,Gk,Drk(短)=Dpk,Drk(长)=Dqk,Drk(中),Gp,Dpq,64,第六章 6.3 系统聚类方法 系统聚类分析的方法-中间距离法,当某步类Gp和Gq合并为Gr后,按中间距离法 计算新类Gr与其他类Gk的类间距离,递推公式为(-1/40),当 = -1/4时,由初等几何知Drk就是上面三角 形的中线.如果用最长距离法,则 Drk =Dqk ; 用最短距离法,则Drk = Dpk .,65,第六章 6.3

32、系统聚类方法 系统聚类分析的方法-重心法,设某一步将Gp和Gq合并成Gr,它们所包含的样品个数分别为np、nq和nr(nr=np+nq).重心分别,4. 重心法(CENtroid method)在定义类与类之间距离时,考虑每一类中所包含的样品个数.将两类间的距离定义为两类重心间的距离,这种聚类方法称为重心法.对样品分类而言,每一类的重心就是属于该类样品的均值.,比如:当G1=1,2,G2=4.5,6时, D212=(5.25-1.5)2=(3.75)2 .,66,第六章 6.3 系统聚类方法 系统聚类分析的方法-重心法,显然有,设某一类Gk(kp,q)的重心为 ,它与新类Gr的距离是,如果样品

33、间的距离定义为欧氏距离,则有,67,第六章 6.3 系统聚类方法 系统聚类分析的方法-重心法,68,第六章 6.3 系统聚类方法 系统聚类分析的方法-重心法,(习题6-7),69,第六章 6.3 系统聚类方法 系统聚类分析的方法-类平均法,5. 类平均法(AVErage linkage)重心法虽有较好的代表性,但并未充分利用各个样品的信息.比如下面两组类按重心法类间距离相等,这是不合理的.,70,第六章 6.3 系统聚类方法 系统聚类分析的方法-类平均法,类平均法把类与类之间的距离定义为两类样品两两之间的平均平方距离,即,比如:当G1=1,2,G2=4.5,6时, D212 = (4.5-1)

34、2+(4.5-2)2+(6-1)2+(6-2)2/4= 12.25+6.25+25+16/4= 59.5/4 = 14.875 或 D12 = 3.85681,71,第六章 6.3 系统聚类方法 系统聚类分析的方法-类平均法,设某一步将Gp和Gq合并成Gr,它们所包含的样品个数分别为np ,nq和nr(nr=np+nq).Gr与其他类Gk的类间距离的递推公式为,72,第六章 6.3 系统聚类方法 系统聚类分析的方法-类平均法,由类平均法类间距离的定义可得:,(kp,q),73,第六章 6.3 系统聚类方法 系统聚类分析的方法-可变类平均法,6. 可变类平均法(FLExiblebeta meth

35、od)类平均法的类间距离递推公式中,类Gp和Gq间的距离没有反映进去,有人建议将合并后新类Gr与其他类Gk的距离公式改为:,其中是可变参数,一般取1.可变类平均法是由类平均法和中间距离法适当推广得到的 . ,74,第六章 6.3 系统聚类方法 系统聚类分析的方法- 可变法及MCQ法, ,7.可变法及McQuitty相似分析法(MCQ)当Gp和Gq合并为Gr后,可变法把Gr与其他类Gk的类间距离的递推公式定义为(1),在cluster过程中使用= 0时的递推公式 :,并把此方法称为McQuitty相似分析法.,75,第六章 6.3 系统聚类方法 系统聚类分析的方法- 离差平方和法,8. 离差平方

36、和法(WARD)离差平方和法是Ward(1936)提出的,也称为Ward法.它基于方差分析思想,如果类分得正确 ,则同类样品之间的离差平方和应当较小,不同类样品之间的离差平方和应当较大.,76,第六章 6.3 系统聚类方法 系统聚类分析的方法- 离差平方和法,k个类的总离差平方和为,当k固定时,要选择使W达到极小的分类.,Wt,Wt,77,第六章 6.3 系统聚类方法 系统聚类分析的方法- 离差平方和法, Ward法的基本思想是,先将n个样品各自成一类,此时W=0,然后每次将其中某两类合并为一类,因每缩小一类离差平方和就要增加,每次选择使W增加最小的两类进行合并,直至所有样品为一类为止. Wa

37、rd法把两类合并后增加的离差平方和看成类间的平方距离,即把类Gp和Gq的平方距离定义为,78,第六章 6.3 系统聚类方法 系统聚类分析的方法- 离差平方和法, ,比如:当G1=1,2,G2=4.5,6时, W1 = (1-1.5)2+(2-1.5)2 = 0.25+0.25=0.5W2 = (4.5-5.25)2+(6-5.25)2 = 0.5625+0.5625 = 1.125 记 G3=G1,G2=1,2,4.5,6 ( 均值=3.375)W3 =(1-3.375)2+(2-3.375)2 +(4.5-3.375)2+(6-3.375)2 = 15.5865 则 D212 = W3 -(

38、W1+W2 )= 15.5865-(0.5+1.125) = 13.9615 或 D12 = 3.7365,79,第六章 6.3 系统聚类方法 系统聚类分析的方法- 离差平方和法, ,下面来推导D2pq的公式.利用Wr的定义:,80,第六章 6.3 系统聚类方法 系统聚类分析的方法- 离差平方和法,经整理可得,当样品间距离采用欧氏距离时,上式可表为,这表明Ward法定义的类间距离与重心法只相差一个常数倍.,81,第六章 6.3 系统聚类方法 系统聚类分析的方法- 离差平方和法, ,当Gp和Gq合并为Gr后,Gr与其他类Gk的距离有如下递推公式:,在实际应用中,离差平方和法应用比较广泛,分类效果

39、较好.但它要求样品间距离必须采用欧氏距离.,(习题6-8),82,第六章 6.3 系统聚类方法 系统聚类方法的统一,以上介绍的八种方法聚类的步骤完全一样,所不同的是类与类之间的距离有不同的定义方法,因而得到不同的递推公式,Lance和Williams于1967年首先给出了统一公式.当Gp和Gq合并为Gr后,新类Gr与其他类Gk的平方距离为:,其中p、q、和是参数,不同的系统聚类方法有不同的取值.,83,第六章 6.3 系统聚类方法 系统聚类方法的统一,84,第六章6.4 系统聚类法的性质 系统聚类方法的简单性质, , (1) 单调性设Dk表示系统聚类法中第k次并类时的距离. 一个系统聚类法若能

40、保证Dk,k=1,2 ,n-1 是单调的,则称它具有单调性.如例6.3.1,用最短距离时有:D1=1, D2=1.5, D3=2, D4=2.5.满足D1D2 D3 D4 . 并类距离有单调性符合系统聚类法的基本思想 .可以证明,最短距离法,最长距离法,类平均法,可变类平均法,离差平方和法都具有单调性, 只有重心法和中间距离法不具有单调性(习题6-4,6-5和6-6).,85,第六章 6.4 系统聚类法的性 系统聚类方法的简单性质, , (2) 空间的浓缩与扩张以例6.3.1来说明该性质.比较最短距离法和最长距离法的并类过程及相应的距离阵可以看出.每一步都有:Dij(短)Dij(长) (对一切

41、i,j). 这种性质称为最长距离法比最短距离法扩张; 或称最短距离法比最长距离法浓缩.,86,第六章 6.4系统聚类法的性质 系统聚类方法的比较,对前面介绍的系统聚类方法,有如下结论:类平均法(或中间距离法)比最短距离法扩张,而且比最长距离法浓缩;类平均法比重心法扩张,而且比离差平方和法浓缩.太浓缩的方法不够灵敏,太扩张的方法当样品容量大时容易失真.类平均法比较适中,相对于其他方法不太浓缩也不太扩张, 而且具有单调性.因而是一种应用广泛、聚类效果较好的方法.,87,第六章 6.4系统聚类法的性质 类的定义,聚类分析的目的是对样品或变量进行分类,但至今对什么是类还没有给出定义.在实际应用中,不同

42、领域里类的含义是不尽相同的,要给出一个严格的统一定义是不容易的。Rao在1977年 曾给三种定义.,定义6.4.1 设阈值T是给定的正数,若集合G中任二个元素的距离dij都满足: dijT (i,jG), 则称G对于阈值T组成一个类.,88,第六章 6.4系统聚类法的性质 类的定义,T=3.51,如最长距离法:给定 T=3.51时,5个样品分为两类,这时两个类中,每一类里任二个样品的距离dijT. 故最长距离法符合定义6.4.1.,若用最短距离法(例6.3.1):给定T=2.01时,5个样品分为两类,这时两个类中,每一类里任二个样品的距离不满足dijT.,1,2,4.5,6,8,最长距离法的谱

43、系图,89,第六章 6.4系统聚类法的性质 类的定义,定义6.4.2 设阈值T是给定的正数,如果集合G中每个iG,都满足:其中n是集合G中元素的个数,则称G对于阈值T组成一个类.,90,第六章 6.4系统聚类法的性质 类的定义,如类平均法:给定T=2.86时,5个样品分为两类,这时每一类里任一个样品与其它样品的平均距离T. 故类平均法符合定义6.4.2.,若用最短距离法(例6.3.1):给定T=2.01时,5个样品分为两类,这时每一类里任一个样品与其它样品的平均距离不满足T.,1,2,4.5,6,8,T=2.86,类平均法的谱系图,91,第六章 6.4系统聚类法的性质 类的定义, ,定义6.4

44、.3 设T和H(HT)是两个给定的正数,如果集合G中两两元素距离的平均满足: 其中n是集合G中元素的个数,则称G对于阈值T,H组成一个类.,92,第六章 6.4系统聚类法的性质 类的定义, ,定义6.4.4 设T是给定的正数,若对集合G中任一个iG,一定存在jG,使得这二个元素的距离dij满足: dijT (i,jG), 则称G对于阈值T组成一个类.,类似地还可以给出以下二个定义.,如最短距离法(例6.3.1):给定T=2.01时,5个样品分为两类,这时每一类里的任一个样品,都存在另一样品使其距离不满足T.故最短距离法符合定义6.4.4.,93,第六章 6.4系统聚类法的性质 类的定义, ,定

45、义6.4.5 设阈值T是给定的正数,将集合G任意分为二类:G1和G2,这两类之间的距离D(G1,G2)满足: D(G1, G2)T , 则称G对于阈值T 组成一个类.,94,第六章 6.4系统聚类法的性质 类的定义,如最短距离法:给定T=2.01时,5个样品分为两类.显然把每一类再任分为两类,则两类间的距离DijT. 故最短距离法符合定义6.4.5.,其实,以上定义的8种类间距离都符合定义6.4.5.,1,2,4.5,6,8,T=2.01,最短距离法的谱系图,95,第六章 6.4系统聚类法的性质 类的定义, ,在系统聚类的方法中,我们重点介绍了类与类之间的8种距离及统一的递推公式. 类的定义6

46、.4.5可用于8种类间距离的任一种.定义6.4.1可用于最长距离法;定义6.4.4可用于最短距离法;定义6.4.2可用于类平均法.容易看出,以上前4种定义中,定义6.4.1要求是最高的,凡是符合它的类,一定也是符合后三种定义的类.此外,凡是符合定义6.4.2的类,也一定是符合后二种定义的类.,96,第六章 6.4系统聚类法的性质 类的特征,设类G包含的样品记为X(1),X(1),X(n) ,其中X(t)(t=1,2,n)为m维总体的样本.可以从不同角度来刻画G的特征,常用的特征有以下三种:1. 均值(重心),97,第六章 6.4系统聚类法的性质 类的特征, ,2. 样本离差阵及样本协差阵,98,第六章 6.4系统聚类法的性质 类的特征,3. 类的直径用DG表示类G的直径,常用的直径有:,99,第六章 6.4系统聚类法的性质 类个数的确定, ,聚类分析中,类的个数如何确定的问题是 一个十分困难的问题,人们至今仍未找到令人满意的方法;但这又是一个不可回避的问题.,迄今为止,虽给出了类的定义,只是从不同的角度直观地叙述了“类”的概念,并未给出严格的统一定义,但要对各种不同形式的类给予统一的定义是比较困难的,“类”的概念是一个模糊的概念.因此在实际应用中,人们并不完全从类的定义来确定类.,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 学术论文 > 大学论文

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报