1、统计学基础项目 1 基础知识第 1 讲 统计的基本问题 统计理论的产生和发展? 1. 国势学派:又称记述学派,产生于 17 世纪的德国,首先使用了“统计学”这个名词。 (有统计学之名,无统计学之实) 2. 政治算术学派:起源于 17 世纪英国,主要代表人物是威廉.配第,著的政治算术 ,可以说是统计学的创始人。 (无统计学之名,有统计学之实) 3. 数理统计学派:产生于 19 世纪比利时,主要代表人物凯特勒,他完成了统计学和概率论的结合,形成了数理统计学。统计的含义? 有统计工作、统计资料和统计学三种含义 ,1. 统计工作:即统计实践,是对社会经济现象以及自然现象的总体数量进行搜集、整理和分析的
2、活动过程。 2.统计资料:即统计数据,是统计工作的成果,是统计工作过程中所取得的反映社会经济实际情况和变化过程的数字资料,是社会经济信息的主体,也是国家制定政策、计划和实行科学管理的数字资料。 3.统计学:是研究统计工作的理论与方法的一门方法论科学,是长期统计工作实践经验和相关理论的科学概括和总结。 4.统计的三种含义之间有着密切的联系。统计资料是统计工作实践的成果,统计学来源于统计工作,是统计工作经验的理论概括,又用理论和方法指导统计工作,推动统计工作不断提高。随着统计工作的进一步发展,统计学不断地充实和提高,二者是理论和实践的关系。由于统计工作、统计资料、统计学联系紧密,所以习惯上把这三者
3、统称为统计。统计学的性质?统计学历经三百多年的发展,现在已经成为一门横跨社会科学,自然科学等领域的综合性学科。 第 2 讲 统计学的研究对象和研究方法 1. 统计学的研究对象是统计研究所要认识的客体。研究对象为大量现象的数量方面,包括现象的数量表现、现象之间的数量关系和质量互变的数量界限。 2. 就性质来说,统计学是一门适用于自然现象和社会现象的方法论学科。 3. 统计学研究对象的特点:数量性、总体性、变异性和具体性。 4. 统计的工作过程:统计设计、统计调查、统计整理和统计分析。 5. 统计学的研究方法:大量观察法、统计分组法、综合指标法、动态数列分析法、指数分析法、抽样推断法、相关分析等。
4、 (其中大量观察法、统计分组法和综合指标法贯穿统计研究的全过程,是统计研究的基本方法。 6. 大量观察法:是对所研究的经济现象总体中的全部单位或足够量的单位进行调查研究,以认识社会经济现象发展变化的规律性的一种统计研究方法。 7. 统计分组法:将总体各单位按照某种标志划分为若干组成部分,这种统计研究方法就是统计分组法。 8. 综合指标法:是指运用各种综合指标,是大量社会经济现象的各个方面进行综合分析来反映总体一般数量特征的统计分析方法。第 3 讲 统计学的几个基本概念 1.统计总体:简称总体,就是我们要调查或统计的某一现象的全部数据的集合。 2.总体单位:是构成总体的各个个别单位,它是组成统计
5、总体的基本单位,也是各项调查项目的直接承担者。 3统计总体的特征:同质性、大量性、差异性。 4.同质性:是指总体中的每一个单位必须具有某种共同的性质。5.大量性:是指构成总体的总体单位必须是大量的。 6.差异性:是指同一总体中的总体单位除了保持同质性外,在其他很多方面必须存在差异。7.统计总体分为有限总体和无限总体。 8.有限总体:是指统计总体中总体单位的数量是有限的。 9.无限总体:是指统计总体中总体瓣数量是无限的或者在实际生活中不可计数的。 10.品质标志表现只能用文字、语言来描述;数量标志表现是用数值来表示的。 11.标志的分类: (1)标志按照其性质可以分为品质标志和数量标志。 (2)
6、标志按照在不同的总体单位之间是否有变化,可分为不变标志和可变标志。 12.变量的分类:(1)变量按其变动规律可分为定性变量和随机变量。 定性变量:变量的变化呈现一定的规律性,在一定程度上人们可以预知的变量称为定性变量,也称确定性变量。 随机变量:变量的变动没有一定的规律,人们不能预知其变动结果。 (2)变量按其数值特征可分为连续变量和离散变量。 连续变量:数值特征呈现连续状态的变量称为连续变量。 离散变量:数值特征呈现离散状态的变量称为离散变量。 13.统计指标:简称指标,是反映同类社会经济现象总体综合数量特征的范畴及其具体数值。(完整的指标应包括指标名称、指标数值、指标所属时间、指标所属空间
7、范畴和环境条件等四个要素) 14.统计指标的类型:(1)统计指标按其反映对象的数量特点不同,分为数量指标和质量指标。 (2)统计指标按其计算形式不同,分为总量指标、相对指标和平均指标。 15.统计指标和标志的区别和联系: 区别:(1)统计指标是说明总体数量特征的,而标志是说明总体单位特征的。 (2)统计指标都必须可量,而标志未必都可量,例如品质标志就不可量。 联系:(1)统计指标的数值是由总体单位的数量标志值进行直接汇总或间接计算分析而来的。 (2)统计指标和数量标志之间存在着转换关系。项目 2 统计调查第 1 讲 统计调查概述 1. 统计调查:是按照统计的任务和调查的目的要求,运用科学的方法
8、搜集或者收集被研究对象的各个标志值的过程。 2. 统计调查的要求:准确性、及时性、完整性、系统性。 3. 统计调查的种类: (1) 统计调查按组织形式,可分为统计报表和专门调查 (2) 统计调查按研究总体的范围,可分为全面调查和非全面调查 (3) 统计调查按调查登记的时间是否连续,可分为连续调查和非连续调查 (4) 统计调查按搜集资料的方法分为直接调查、凭证调查、采访调查、问卷 调查。 (5) 此外,也有人根据调查工作时间的周期长短,交统计调查划分为经常性 调查和一次性调查。 (经常性调查是批调查周期在一年以内的调查,间隔超过一年的为一次性调查。 ) 4. 统计调查的方式:统计报表、普查、抽样
9、调查、重点调查、典型调查等 5. 统计报表:是按国家统一规定的表式,统一的指标项目、统一的报送时间,自下而上逐级定期提供基本统计资料的调查方式方法。 6. 普查是专门组织的不连续性全面调查。普查和全面统计报表都属于全面调查,普查属于不连续调查,而全面统计报表属于连续调查。 7. 抽样调查:是按随机原则从总体中选取一部分单位进行观察,用以推算总体数量的一种非全面调查。 8. 抽样调查的特点: (1)既是非全面调查,又要达到对总体数量特征的认识。 (2)按随机原则去抽取调查单位。 (3)抽样调查具有经济性、时效性、准确性、灵活性等特点。 9. 抽样调查的作有: (1)能够解决全面调查无法或难以解决
10、的问题。 (2)可以用补充和订正全面调查的结果。 (3)可用于生产过程中产品质量的检查和控制。 (4)可用于对总体的某种假设进行检验。 10.重点调查:是专门组织的一种非全面调查,它是对所要调查的全部单位选择一部分重点单位进行调查。 11. 典型调查:有意识的选择若干具有代表性的单位进行调查,借以认识事物发展的规律。12典型调查的选典方法: (1)解剖麻雀法 (2)划类选典法 (3)抓两头法 13. 典选调查的特点: ( 1)深入细致的调查,既可以搜集数字资料,又可以搜集不能用数字反映的实际情况 (2)调查单位是有意识的选择出来的若干有代表性的单位,它更多地取决于调查者主观判断和决策。第 2
11、讲 统计调查的方案设计 1. 一个完整的调查方案,应包括以下基本内容: (1) 确定调查目的 (2) 确定调查对象和调查单位 (3) 确定调查项目和拟定调查表 (4) 确定调查时间和调查期限 (5) 确定调查工作的组织实施计划 第 3 讲 统计调查的方法 1. 统计调查中常用的调查方法有:观察法、询问调查法、实验法、报告法、网上调查法等。2. 观察法:又称直接观察法,是由调查人员到现场亲自对调查对象进行观察、计量、登记,以取得第一手资料的方法。 3. 询问调查法:又称直接调查法,是调查人员以询问为手段,从调查对象的回答中获得信息资料的一种方法。 (它是市场调查中最常用的方法之一)4. 实验法:
12、是指通过某种实践活动的验证法去收集有关资料的调查方法。 5. 报告法:是由调查单位根据各种原始记录和核算资料,按照统一的表格及填报要求,及时向有关单位提供统计资料的一种调查方法。 6. 网上调查法:是一种利用因特网作为媒介的调查方式。 (是最流行的) 第 4 讲 调查问卷的设计 1. 问卷:又称调查表或询问表,是统计调查的重要工具,是一种以书面形式记载和反映被调查对象的反映和看法,从而获得所需资料和信息的表式。 2. 问卷设计:是根据调研目标和所需资料内容,按照一定的格式将调查问题有序排列,形成调查表的活动过程。 3. 问卷的基本结构:前言、主体、编码、结束语等。 4. 问卷设计的程序: (1
13、) 确定调研目的、来源和局限阶段 (2) 分析样本特征,确定问卷类型阶段 (3) 确定数据收集方法阶段 (4) 确定问题回答形式阶段 (5) 决定问题的措辞阶段 (6) 确定问卷的流程和编排阶段 (7) 确定问卷和编排阶段 (8) 获得各方面的认可阶段 (9) 预先测试和修订阶段 (10)准备最后的问卷阶段 (11)具体实施阶段 5. 问卷设计要注意的问题: (1) 文字要表达准确。 (2) 问卷要避免使用引导性的语句。 (3) 问卷问句设计要有艺术性,避免对填卷人 生刺激而不能很好地合作(4) 问卷不要提不易回答的问题。 (5) 问题设计排列要科学 (6) 使用统一的参考架构 (7) 有利于
14、数据的处理。项目 3 统计整理 第 1 讲 统计整理概述 1. 统计整理:是对统计调查所搜集到的原始资料进行科学的加工整理,使用之条理化、系统化,氢反映总体单位的大量原始资料,转化为反映总体的基本统计指标,统计工作的这一过程。 2. 统计整理的内容: (1) 根据研究任务的要求,选择应整理的指标,并根据分析的需要确定具体 的分组。 (2) 对统计资料进行汇总。 (3) 通过统计表描述汇总的结果。3. 统计整理的步骤: (1) 设计整理方案 (2) 对调查资料进行审核、订正 (3) 进行科学的分组 (4) 统计汇总 (5) 编制统计表,绘制统计图 第 2 讲 统计分组 1. 统计分组:是根据研究
15、任务的要求和现象总体的内在特点,将统计总体按照一定的标志划分为性质不同而有联系的若干组成部分的一种统计方法。 2. 从统计分组的性质来看,具有两方面的含义。对总体而言是“分” ,而对于总体单位而言是“合” 。 3. 统计分组的作用: (1) 可以区分社会经济现象的类型 (2) 可以研究总体内部结构 (3) 可以提示现象之间的依存关系 4. 统计分组的类型: (1) 按照分组标志的多少不同,统计总体可以采用简单分组,也可以采用复 合分组。 (简单分组:是对总体按一个标志进行分组;只反映现象在某一特征方面的差异情况。复合分组:是指对总体用两个或两个以上的标志进行层叠分组。 ) (2) 按照分组标志
16、的性质不同,统计总体可以按品质标志分组,也可以按数 量标志分组。(品质分组:是指选择反映事物属性差异的品质标志作为分组标志进行分组;数量分组:也称变量分组,是指选择反映事物数量差异的数量标志作为分组标志进行分组。 ) 5. 数量分组中常的几个概念: (1) 全距:也叫极差,是变量数列中所有变量变动的最大范围,常用 R 表示 (全距(R )= 最大变量值-最小变量值(2) 组限:是各组变量值的变动界限,是组与组之间的分界点。 (3) 闭口组和开口组 (4) 组距 (5) 组中值(组中值=(上限+ 下限)/2=下限+组距/2=上限-组距/2 第 3 讲 分配数列1. 分配数列:是统计整理结果的一种
17、重要表现形式,也是统计分析的一种重要方法。 2. 分配数列的种类:品质分配数列、变量分配数列。 3. 品质分配数列:按品质标志分组形成的分配数列。 4. 变量分配数列:按数量标志分组形成的根本数列。 5. 分配数列的编制(方法): 第一步,将原始资料按其数值大小重新排列 第二步,确定全距 第三步,确定组距和组数 第四步,确定组限 第五步,编制变量分配数列 第 4 讲 统计表和统计图 1. 统计表:是指用纵横交叉的线条所绘制的用以表现统计资料的表格(它是表现统计资料的一种最主要的形式) 2. 统计表的构成: (1) 统计表从形式上看由标题、横行标题、纵栏标题、指标值四个组成部分 构成。 (2)
18、统计表从内容上看包括主词和宾词两部分。 3. 统计表的种类:按照统计表的主词是否分组及分组的程度,分为简单表、分组表和复合表 4. 统计图,常用的统计图有条形图、折线图、饼状图和曲线图。项目 4 综合指标 第 1 讲 总量指标 1. 总量指标:是反映某种社会经济现象在一定时间、空间和环境条件下的总规模、总水平或工作总量的综合指标,是最基本的统计指标。 (由于总量指标的表现形式为绝对数,因此,总量指标又叫统计绝对数) 2. 总量指标在社会经济统计中的作用 (1) 总量指标是认识社会经济现象的起点 (2) 总量指标是实行社会经济管理的依据之一 (3) 总量指标是计算相对指标和平均指标的基础(相对指
19、标和平均指标一般 都是由两个有联系的总量指标相对比而计算出来的,它们是总量指标的派生指标) 3. 总量指标的种类: (1) 按总量指标所反映的内容不同,分为总体单位总量和总体标志总量 。 (总 体单位总量是反映总体或总体各组单位的总量指标。它是总体内所有单位的合计数,主要用来说明总体本身规模的大小。总体标志总量是反映总体或总体各组标志植总和的总量指标。 ) (2) 按总量指标所反映的时间状况不同,分为时期指标和时点指标。(时期指 标是反映现象在一定时期内发展过程的总量指标。时点指标是反映现象在某一时点上所处状况的总量指标。 ) (3) 按总量指标所采用计量单位不同,分为实物指标、价值指标和劳动
20、指标。 4. 总量指标的计算方法:直接计算法、间接计算法 5. 计算和应用总量指标应注意的问题: (1) 明确规定每项指标的含义和范围 (2) 注意现象的同质性 (3) 正确确定每项指标的计量单位第 2 讲 相对指标 1. 相对指标:又称相对数,是社会经济现象中两个相互有联系的指标数值之比 所得比率或比值,用以反映现象的发展程度、结构、强度或比例关系。 相对指标=比数/基数 2. 相对指标在统计研究中的作用: (1) 相对指标比绝对数指标更清晰地反映事物之间的发展变化程度、结构、 强度等,充分说明事物的本质。 (2) 相对指标可以使不能直接对比的总量指标找到可以对比的途径,进行更 为有效的分析
21、。 3. 结构相对指标:是在总体分组的基础上,将总体划分为若干组成部分,以各部分的数值与总体指标数值对比而计算的比重或比率。 (结构相对指标=总体某一部分的数值/总体全部数值) 4. 比例相对指标:是由总体内部不同组成部分数值之间对比求得的相对数,它反映的是总体各组成部分的数值联系程度和比例关系。 (比例相对指标=总体中某一部分的指标数值/总体中另一部分的指标数值) 5. 比较相对指标:是在同一时期内地区与地区之间、部门与部门之间、单位与单位之间的同类现象的指标进行对比的比率。 (比较相对指标=甲空间上某项指标数值/乙空间上某项指标数值) 6. 计划完成程度指标:是指在一定时期内社会经济现象的
22、实际完成数与计划任务数之比,用以表明计划完成的程度,通常以百分数表示。 (计划完成程度相对指标=(实际完成数/计划任务数)*100%) 7. 强度相对指标:是两个性质不同但有联系的指标进行对比的比值。 (强度相对指标=某一总量指标数值/另一有联系但性质不同的总量指标数值) 8. 动态相对指标:是把不同时期的同一类指标数值进行对比的比值,用以说明现象发展变化的方向和程度,一般用百分数或倍数表示。 (动态相对指标=报告期指标数值/基期的指标数值) 9. 相对指标分析时注意的问题: (1) 遵循对比指标的可比性原则 (2) 各种相对指标结合应用分析 (3) 相对指标与总量指标结合运用 练习题 P80
23、P86第 3 讲 平均指标 1. 平均指标:是同类社会经济现象一般水平的统计指标,其数值表现为平均数,因此平均指标又称统计平均数。 2. 平均指标可以分为算术平均数、调和平均数、几何平均数、中位数和众数等五种 3. 平均指标其作用具体表现在哪几个方面? (1) 平均指标可以反映现象总体的一般水平 (2 ) 平均指标可和分组法、分配数列结合起来分析现象间的依存关系和总体 单位的具体分配状况以及平均数的实现过程。 (3) 平均指标可以用来对同类现象在不同空间、不同时间条件下的对比分析, 从而反映现象在不同地区之间的差异,揭示现象在不同时间之间的发展趋势。 (4) 平均指标中的算术平均数、中位数和众
24、数,可以研究总体单位分布的集 中趋势和离中趋势。 4. 算术平均数:是对总体各单位某一数量标志值之和的平均,它等于总体单位某一数量标志之和除以总体单位数(算术平均数=总体标志总量/总体单位数) 5. . 简单算术平均数公式:n Xn XXXX.321 (例)某学习小组 6 位同学的数学考试成绩分别为:70 分、78 分、82 分、85 分、90 分、98 分,则该组 6 位同学的平均成绩为:6. 加权算术平均数公式: f f x fxfffffxfxfxXnnn212211 (例)某地区 20 家纺织企业的月产值资料统计表如下:,试计算 20 家纺织企业的平均月产值。 月产值(万元)x 企业数
25、(家)f 各组产值(万元)xf 100 110 120 130 140 150 1 3 4 6 4 2 100 330 480 780 560 300 合计 20 2550 7. 调和平均数:也叫倒数平均数,是指总体各单位标志值倒数的算术平均数的倒数。 (一般用字母 H 表式) 调和平均数公式: x mmH (例) 某企业 3 月份购进某种原材料三批,每批价格和采购金额见下表,试计算9. 中位数:把部体各单位某一数量标志值按大小顺序排列,居于中间位置的标志值。 一、根据未分组资料确定中位数; (1) 将总体各单位标志值按大小顺序排列。 (2) 计算中位数所在的位置(n+1)/2 ,该位置对应的
26、标志值即为中位数。 若总体单位数 N 为奇数,处于中间位置的标志值即为中位数,若 N 为偶数,则处于中间公交车的两个标志值的算术平均数即为中位数。 (例)某地区 8 家 4S 汽车店的周销售量(辆)分别为:35、36、40、41、43、46、46、50. 则中位数的位置: (n+1)/2=(8+1)/2=4.5 将排在第四位、第五位的 4S 汽车店的周销售量简单算术平均,即:(41+43)/2=42 (辆) ,42 辆就是中位数。第 4 讲 标志变异指标 1.标志变异指标:又称标志变动度,是用来说明总体各单位标志值之间差异程度 的指标,它反映标志值的离中趋势。 2.标志变异指标的作用: (1)
27、 标志变异指标是评价平均指标代表性的尺度 (2) 标志变异指标可以反映现象变动的均衡性或稳定性 3.常用的标志变异指标:全距、平均差、方差、和标准差、离散系数,其中标准差的应用最为广泛。 (1)全距:是总体中各单位标志值中最大值与最小值之差,又称为极差。 公式:全距(R )= 最大标志值-最小标志值 (例)有甲乙两个学习小组,每组 6 个人,每人的英语成绩如下(单位:分) 甲组:65 74 82 84 85 90 乙组:71 77 79 82 85 86 通过计算甲乙两组的平均成绩都是 80 分,甲组的全距=90-65=25(分),乙组的全距=86-71=15(分) ,可见甲组英语成绩的变动范
28、围比乙组组大,即甲资料的标志变动大于乙组,平均数代表性差。 (2)平均差:是总体各单位标志值与算术平均数的离差绝对值的算术平均数。 公式: 1.在资料未分组的情况下,采用简单平均法计算平均差计算公式为:n xxAD 2.在资料分组的情况下,采用加权平均法计算平均差。 计算公式为: ffxxAD 3.平均差系数:%100 x AD VAD (例)以上题资料为例,计算其平均差。 甲组平均差: AD=(65-80 + 74-80 +82-80+84-80+85-80+ 90-80 )/6=42/6=7 乙组平均差:项目 5 动态数列 第 1 讲 动态数列概述 1. 动态数列:又称时间数列、时间序列,
29、是将某一指标在不同时间上的数值,按时间先后顺序排列而成的统计数列。 2. 动态数列的分类:绝对数动态数列、相对数动态数列、平均数动态数列。 (1)绝对数动态数列:又称为总量指标动态数列,是由一系列总量指标数值按时间先后顺序排列而成的统计数列。 (绝对数动态数列又可分为时期数列和时点数列) 时期数列的特点:1、数列中的每一项指标数值都是通过连续登记取得的;2、数列中每个指标数值的大小与其包含时间的长短有直接关系,包含时期越长,指标数值越大;3、数列中各项指标数值可以直接相加,相加后反映更长一段时期的总量指标。 时点数列:是反映某种社会经济现象在一定时点(时刻)上的状况及其水平的绝对数动态数列。其
30、特点:1、数列中的每一项指标数值,都是在某一时刻的特定状况下进行一次性登记取得的;2、数列指标的数值大小,与时点间隔的长短无直接关系;数列中各项指标不能相加,加总后的结果不具有实际意义。 (2)相对数动态数列:又称相对指标动态数列,是由一系列同类相对指标数值按时间先后顺序排列而成的统计数列。 (3)平均数动态数列:又称为平均指标动态数列,是由一系列同类平均指标数值按时间先后顺序排列而成的统计数列。 3.动态数列的编制原则 (1)时间长短应该相等 (2)总体范围应该一致 (3)经济内容必须相同 (4)指标的计算方法、计量单位和计算价格应该一致第 2 讲 动态数列的水平分析 1.发展水平:是动态数
31、列中各具体时间条件下的指标数值,简称水平,它反映事物的发展变化在一定时期内或时点上所达到的水平。 2.平均发展水平:将动态数列中各个 发展水平加以平均而得到的平均数换为平均发展水平,用以反映现象在一段时间内发展变化所达到的一般水平。3.增长量:动态数列中不同时间的发展水平之差称为增长量,用以反映经济现象经过一定时期发展变化增加(或减少)的绝对水平。 公式:增长量=报告期水平-基期水平 4.平均增长量:是逐期增长量的序时平均数,用以表明经济现象在一定时期内平均每期比前期增长的绝对水平。 公式:平均增长量= 逐期增长量之和/ 逐期增长量项数=数列末期累计增长量/数列项数-1 第 3 讲 动态数列的
32、速度分析 1.发展速度:是现象在两个不同时期发展水平的比值,用以表明现象发展变化的相对程度。 公式 :发展速度=(报告期水平/基期水平)*100% (1)环比发展速度是报告期水平与前一期水平之比,用以反映现象逐期发展的程度。 公式:环比发展速度=ai/ai-1(i=1,2,3.,n) 式中:ai 为报告期水平,ai-1 为报告期前一期水平 (2)定基发展速度是报告期水平与某一固定基期水平之比,用以反映现象在较长一段时期内总的发展程度 公式:R=ai/a0 (i=1,2,3 ,n) 2.增长速度:是增长量与基期水平的比值,用以反映经济现象报告期水平比基期水平的增长 程度。 公式:增长速度 =(增
33、长量/基期水平)*100%=发展速度-1 ( 1)环比增长速度:是报告期逐期增长量与前期水平之比,用以反映现象逐期增长的程度。 公式:环比增长速度 =逐期增长量/ 前期水平=环比发展速度-1 (2)定基增长速度:是报告期累计增长量与固定基期水平之比,用以反映现象在较长一段时期内总的增长程度。 公式:定基增长速度=累计增长量/固定基期水平=定期发展速度-1项目 6 抽样推断 第 1 讲 抽样推断概述 1.抽样推断:又称抽样调查,是按照随机原则,从研究对象的全部单位中抽取一部分单位进行调查,并用调查所得到的数据资料推断总体数量特征的一种非全面调查方式。 2.抽样推断的特点: (1)按随机原则抽取调
34、查单位 ( 2)用抽样指标推断总体的数量特征 (3)可以计算和控制抽样误差 3.抽样推断的应用: ( 1)抽样推断能完成其他调查方式不能完成的调查任务 (2)利用抽样推断结果对已取得的全面调查资料进行检验和修正 (3)利用抽样推断原理和结果进行假设检验,以对事物做出正确的判断认识 (4)利用抽样推断方法对工业生产过程进行质量控制 4.全及总体:全及总体即统计总体,又称母体,简称为总体,是指所要了解认识的对象的全体。 5.样本总体:样本总体又叫子样,简称样本,他是从全及总体中随机抽取出来,代表全及总体的那部分单位的集合,样本总体的单位数称为样本容量,通常用 n 表示。 6.参数:也叫全及指标或总
35、体指标,是反映全及总体数量牲的综合指标。 7.抽样方法:(1)重置抽样,也称回置抽样(2)不重置抽样,也称不回置抽样(3)根据对样本 的要求不同,抽样方法又有考虑顺序抽样和不考虑顺序抽样两种。 8. 抽样推断的组织形式主要有:(简单随机抽样、类型抽样、等距抽样、整群抽样、多阶段抽样) 9.简单随机抽样:又称纯随机抽样。是不对总体做任何处理,直接按随机原则抽取调查单位。 (抽样误差的计算方法是以此种方式为基础的) 10.类型抽样:又叫分层抽样或分类抽样。是将总体中的所有单位先按某一主要标志分成若干(或组) ,使组内各单位标志表现比较接近,然后从各类中随机抽取一部分单位,共同组成样本。 11.等距
36、抽样:又叫机械抽样,是先将总体各单位按某一标志进行排队,根据既定的抽样比例确定抽样间距,然后按一定顺序等间隔地抽取一样本单位。 12.整群抽样:是先将总体划分为若干个群,每一群内包含若干个单位,然后随机抽取一部分群作为样本群,对样本群中的所有总体单位进行全面调查的调查方式。 13.多阶段抽样:是把抽取样本单位的过程分成两个或更多阶段进行。 第2 讲 抽样误差 1.抽样误差:是样本指标和总体指标之间总是存在着某种程度的离差。 2.抽样推断中的误差来源?(1)登记性误差,即在调查过程中,由于主客观原因而引起的误差。(如重复登记、遗漏、汇总计算错误以及有意弄虚作假) (2)代表性误差,即样本各单位的
37、结构情况不足以代表总体特征而引起的误差。 (非随机的代表性误差、随机性误差) 3.抽样平均误差:是抽样平均数的标准差,它反映抽样平均数(或抽样成数)与总体平均数的平均差异程度。样本平均数的抽样平均 MPpM PpMXxM Xxppxx 2 2 ) (: ) ( 4.简单随机抽样的抽样平均误差的计算。 (1 )抽样平均数的平均误差的计算。 在重置抽样的情况下,抽样平均数的平均误差: 项目 7 相关与回归分析 第 1 讲 相关分析 1.相关关系:是社会现象之间客观存在的,在数量变化上受随机因素影响的,非确定性的相互依存关系。 2.相关关系的特点: (1)相关关系表现为现象间相互依存的关系。 (2)
38、相关关系在现象间表现为非确定性的相互依存关系。 3.相关关系的种类: (1)相关关系按照影响因素的多少分为单相关和复相关。 (2)相关关系按表现形态分为直线相关和曲线相关。 (3)相关关系按变动方向分为正相关和负相关。 (4)相关关第按密切程度分为完全相关、不完全相关和不相关。相关关系密切程度判断标准 相关系数绝值r相关关系密切程度 0.3 以下 不相关 0.30.5 低度相关 0.50.8 显著相关 0.8 以上 高度相关相关关系系数r 公式: 22 2)(1)(1)(1 yyn xxnyyxxnry xxy 式中:x 为自变量;x 为自变量数列的平均值; y 为因变量;y 为因变量数列的平
39、均值; 2 xy 为变量 x、y 的协方差; x 为变量 x 的标准差; y 为变量 y 的标准差。 分子(子项)为变量 x 的离差与变量 y 的离差的乘积的均数(又称协方差) ;分母(母项)为变量 x 的标准差与变量 y 的标准差的乘积。 相关系数 r 的简洁计算公式:第 2 讲 回归分析 1.回归分析:是对具有相关关系的两个或两个以上变量之间数量变化的一般关系进行测定,确定因变量和自变量之间变动关系的数学表达式,以便对因变量进行估计或预测的统计分析方法。 2.回归分析的特点: (1)在对两个变量进行回归分析时,必须根据研究的目的确定自变量和因变量。 (2)回归分析中,因变量是承机变量,自变
40、量是非随机变量。 (3)在两个变量互为因果的前提下,可以依据研究的目的分别建立 y对于 x 的回归方程,也可以建立 x 对于 y 的回归方程。 (4)在用回归方程进行估计预测时,只能给出自变量的数值来估计因变量的数值,即一个方程只能做一种推算。利用综合指数来编制总指数,关键是如何选择合适的同度量因素。首先,编制综合指数需要解决综合的问题,即如何将不能直接相加的三种产品的产量综合起来,以反映其变动。三种产品的产量指标是实物量指标,其使用价值不同,不具有综合性能,是不同度量现象,但它们的价值指标产值具有综合性能,是可同度量现象。因此,可以将产量转化成产值来进行综合。因为产量*出厂价格=产值,所以出
41、厂价格在此是产量转化成产值的中间媒介因素,将这种能将不同度量的现象转化成可同度量的现象的中间媒介因素称为同度量因素。在此,就将产量的汇总问题转换成产值的汇总问题来研究,从而解决了三种产品的产量不能综合的问题。另外,通常将所要反映变动的因素称为指数化因素,在这个例子中,产量就是指数化因素。 k-个体指数 k-总指数 1-报告期 0-基期 p-质量指标 q-数量指标 第 3 讲 平均指数 编制综合指数,需要全面的原始资料,但在许多情况下,某些资料是很难得的。 加权自述平均指数公式:第 4 讲 指数体系及其因素分析 1.指数体系:在统计中,若干个系数由于经济上的相互联系以及数量上保持一定的对等关系而组成的整体。 2.指数体系的作用: (1)利用指数体系,可以进行因素分析,测定某一现象的总变动中各个影响因素作用的方向、影响的程度以及影响的绝对额,以探索现象变动的具体原因。 (2)利用指数体系,可以进行有关指数之间的换算。 3.指数体系的种类: (1)两因素指数体系和多因素指数体系 (2)总量指标指数体系和平均指标指数体系 总成本指数=产量指数*单位成本指数 职工平均工资指数=职工工资水平指数*职工人数结构指数