1、离散型随机变量的分布列(2),回顾复习,如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,1. 随机变量,对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量,2.离散型随机变量,3、离散型随机变量的分布列的性质:,解:根据分布列的性质,针尖向下的概率是(1p),于是,随机变量X的分布列是:,1、两点分布列,象上面这样的分布列称为两点分布列。如果随机变量X的分布列为两点分布列,就称X服从两点分布,而称p=P(X=1)为成功概率。,练习:,1、在射击的随机试验中,令X= 如果射中的概率为0.8,求随机变量X的分布列。,0,射中, 1,未射中,2、
2、设某项试验的成功率是失败率的2倍,用随机变量 去描述1次试验的成功次数,则失败率p等于( )A.0 B. C. D.,C,例2:在含有5件次品的100件产品中,任取3件,试求: (1)取到的次品数X的分布列; (2)至少取到1件次品的概率.,解:(1)从100件产品中任取3件结果数为,从100件产品中任取3件,其中恰有K件次品的结果为,那么从100件产品中任取3件, 其中恰好有K件次品的概率为,一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件产品数,则事件X=k发生的概率为,2、超几何分布,称分布列为超几何分布,例3:在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和
3、个20白球,这些球除颜色外完全相同。一次从中摸出5个球,至少摸到3个红球就中奖。求中奖的概率。,例4:袋中有个5红球,4个黑球,从袋中随机取球,设取到一个红球得1分,取到一个黑球得0分,现从袋中随机摸4个球,求所得分数X的概率分布列。,练: 盒中装有一打(12个)乒乓球,其中9个新的,3个旧的,从盒中任取3个来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量。求X的分布列。,例5:在一次英语口语考试中,有备选的10道试题,已知某考生能答对其中的8道试题,规定每次考试都从备选题中任选3道题进行测试,至少答对2道题才算合格,求该考生答对试题数X的分布列,并求该考生及格的概率。,例6:袋中装有黑
4、球和白球共7个,从中任取2个球都是白球的概率为 。现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取到的机会是等可能的,用 表示取球终止时所需要的取球次数。 (1)求袋中原有白球的个数; (2)求随机变量 的概率分布; (3)求甲取到白球的概率。,练习,从110这10个数字中随机取出5个数字,令 X:取出的5个数字中的最大值试求X的分布列,具体写出,即可得 X 的分布列:,解: X 的可能取值为,5,6,7,8,9,10 并且,=,求分布列一定要说明 k 的取值范围!,例 7、从一批有10个合格品与3个次品的产品中,一件
5、一件的抽取产品,设各个产品被抽到的可能性相同,在下列两种情况下,分别求出取到合格品为止时所需抽取次数 的分布列。 (1)每次取出的产品都不放回该产品中; (2)每次取出的产品都立即放回该批产品中,然后再取另一产品。,变式引申:,1、某射手射击目标的概率为0.9,求从开始射击到击中目标所需的射击次数 的概率分布。 2、数字1,2,3,4任意排成一列,如果数字k 恰好在第k个位置上,则称有一个巧合,求巧合数 的分布列。,一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球的个数是绿球个数的两倍,黄球个数是绿球个数的一半,现从该盒中随机取出一球,若取出红球得1分,取出绿 球得0分,取出黄球得-1分,试写出从该盒内随机取出一球所得分数的分布列.,